Skip to main content

Maturation of Secretory Granules

  • Chapter
  • First Online:
Book cover Cellular Peptide Hormone Synthesis and Secretory Pathways

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 50))

Abstract

Exocrine, endocrine, and neuroendocrine cells store hormones and neuropeptides in secretory granules (SGs), which undergo regulated exocytosis in response to an appropriate stimulus. These cargo proteins are sorted at the trans-Golgi network into forming immature secretory granules (ISGs). ISGs undergo maturation while they are transported to and within the F-actin-rich cortex. This process includes homotypic fusion of ISGs, acidification of their lumen, processing, and aggregation of cargo proteins as well as removal of excess membrane and missorted cargo. The resulting mature secretory granules (MSGs) are stored in the F-actin-rich cell cortex, perhaps as segregated pools exhibiting specific responses to stimuli for regulated exocytosis. During the last decade our understanding of the maturation of ISGs advanced substantially. The use of biochemical approaches led to the identification of membrane molecules mechanistically involved in this process. Furthermore, live cell imaging in combination with fluorescently tagged marker proteins of SGs provided insights into the dynamics of maturing ISGs, and the functional implications of cytoskeletal elements and motor proteins.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahras M, Otto GP, Tooze SA (2006) Synaptotagmin-IV is necessary for the maturation of secretory granules in PC12 cells. J Cell Biol 173:241–251

    PubMed  CAS  Google Scholar 

  • Almers W (1990) Exocytosis. Annu Rev Physiol 52:607–624

    PubMed  CAS  Google Scholar 

  • Arnaoutova I, Smith AM, Coates LC et al (2003) The prohormone processing enzyme PC3 is a lipid raft-associated transmembrane protein. Biochemistry 42:10445–10455

    PubMed  CAS  Google Scholar 

  • Arvan P, Castle D (1998) Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem J 332(Pt 3):593–610

    PubMed  CAS  Google Scholar 

  • Assadi M, Sharpe JC, Snell C et al (2004) The C-terminus of prohormone convertase 2 is sufficient and necessary for Raft association and sorting to the regulated secretory pathway. Biochemistry 43:7798–7807

    PubMed  CAS  Google Scholar 

  • Avery J, Ellis DJ, Lang T et al (2000) A cell-free system for regulated exocytosis in PC12 cells. J Cell Biol 148:317–324

    PubMed  CAS  Google Scholar 

  • Benedum UM, Lamouroux A, Konecki DS et al (1987) The primary structure of human secretogranin I (chromogranin B): comparison with chromogranin A reveals homologous terminal domains and a large intervening variable region. EMBO J 6:1203–1211

    PubMed  CAS  Google Scholar 

  • Bittner MA, Holz RW (1992) Kinetic analysis of secretion from permeabilized adrenal chromaffin cells reveals distinct components. J Biol Chem 267:16219–16225

    PubMed  CAS  Google Scholar 

  • Blazquez M, Thiele C, Huttner WB et al (2000) Involvement of the membrane lipid bilayer in sorting prohormone convertase 2 into the regulated secretory pathway. Biochem J 349(Pt 3):843–852

    PubMed  CAS  Google Scholar 

  • Brechler V, Chu WN, Baxter JD et al (1996) A protease processing site is essential for prorenin sorting to the regulated secretory pathway. J Biol Chem 271:20636–20640

    PubMed  CAS  Google Scholar 

  • Bundgaard JR, Birkedal H, Rehfeld JF (2004) Progastrin is directed to the regulated secretory pathway by synergistically acting basic and acidic motifs. J Biol Chem 279:5488–5493

    PubMed  CAS  Google Scholar 

  • Burgoyne RD, Morgan A (2003) Secretory granule exocytosis. Physiol Rev 83:581–632

    PubMed  CAS  Google Scholar 

  • Chanat E, Huttner WB (1991) Milieu-induced, selective aggregation of regulated secretory proteins in the trans-Golgi network. J Cell Biol 115:1505–1519

    PubMed  CAS  Google Scholar 

  • Chanat E, Weiss U, Huttner WB et al (1993) Reduction of the disulfide bond of chromogranin B (secretogranin I) in the trans-Golgi network causes its missorting to the constitutive secretory pathways. EMBO J 12:2159–2168

    PubMed  CAS  Google Scholar 

  • Chung SH, Joberty G, Gelino EA et al (1999) Comparison of the effects on secretion in chromaffin and PC12 cells of Rab3 family members and mutants. Evidence that inhibitory effects are independent of direct interaction with Rabphilin3. J Biol Chem 274:18113–18120

    PubMed  CAS  Google Scholar 

  • Cochilla AJ, Angleson JK, Betz WJ (2000) Differential regulation of granule-to-granule and granule-to-plasma membrane fusion during secretion from rat pituitary lactotrophs. J Cell Biol 150:839–848

    PubMed  CAS  Google Scholar 

  • Colomer V, Kicska GA, Rindler MJ (1996) Secretory granule content proteins and the luminal domains of granule membrane proteins aggregate in vitro at mildly acidic pH. J Biol Chem 271:48–55

    PubMed  CAS  Google Scholar 

  • Cool DR, Loh YP (1994) Identification of a sorting signal for the regulated secretory pathway at the N-terminus of pro-opiomelanocortin. Biochimie 76:265–270

    PubMed  CAS  Google Scholar 

  • Cool DR, Loh YP (1998) Carboxypeptidase E is a sorting receptor for prohormones: binding and kinetic studies. Mol Cell Endocrinol 139:7–13

    PubMed  CAS  Google Scholar 

  • Cool DR, Normant E, Shen F et al (1997) Carboxypeptidase E is a regulated secretory pathway sorting receptor: genetic obliteration leads to endocrine disorders in Cpe(fat) mice. Cell 88:73–83

    PubMed  CAS  Google Scholar 

  • Coppola T, Perret-Menoud V, Luthi S et al (1999) Disruption of Rab3-calmodulin interaction, but not other effector interactions, prevents Rab3 inhibition of exocytosis. EMBO J 18:5885–5891

    PubMed  CAS  Google Scholar 

  • Degtyar VE, Allersma MW, Axelrod D et al (2007) Increased motion and travel, rather than stable docking, characterize the last moments before secretory granule fusion. Proc Natl Acad Sci USA 104:15929–15934

    PubMed  CAS  Google Scholar 

  • Desnos C, Schonn JS, Huet S et al (2003) Rab27A and its effector MyRIP link secretory granules to F-actin and control their motion towards release sites. J Cell Biol 163:559–570

    PubMed  CAS  Google Scholar 

  • Desnos C, Huet S, Fanget I et al (2007) Myosin va mediates docking of secretory granules at the plasma membrane. J Neurosci 27:10636–10645

    PubMed  CAS  Google Scholar 

  • Dhanvantari S, Loh YP (2000) Lipid raft association of carboxypeptidase E is necessary for its function as a regulated secretory pathway sorting receptor. J Biol Chem 275:29887–29893

    PubMed  CAS  Google Scholar 

  • Dhanvantari S, Arnaoutova I, Snell CR et al (2002) Carboxypeptidase E, a prohormone sorting receptor, is anchored to secretory granules via a C-terminal transmembrane insertion. Biochemistry 41:52–60

    PubMed  CAS  Google Scholar 

  • Dikeakos JD, Reudelhuber TL (2007) Sending proteins to dense core secretory granules: still a lot to sort out. J Cell Biol 177:191–196

    PubMed  CAS  Google Scholar 

  • Dikeakos JD, Lacombe MJ, Mercure C et al (2007) A hydrophobic patch in a charged alpha-helix is sufficient to target proteins to dense core secretory granules. J Biol Chem 282:1136–1143

    PubMed  CAS  Google Scholar 

  • Dikeakos JD, Di LP, Lacombe MJ et al (2009) Functional and structural characterization of a dense core secretory granule sorting domain from the PC1/3 protease. Proc Natl Acad Sci USA 106:7408–7413

    PubMed  CAS  Google Scholar 

  • Dittie AS, Hajibagheri N, Tooze SA (1996) The AP-1 adaptor complex binds to immature secretory granules from PC12 cells, and is regulated by ADP-ribosylation factor. J Cell Biol 132:523–536

    PubMed  CAS  Google Scholar 

  • Dittie AS, Thomas L, Thomas G et al (1997) Interaction of furin in immature secretory granules from neuroendocrine cells with the AP-1 adaptor complex is modulated by casein kinase-II phosphorylation. EMBO J 16:4859–4870

    PubMed  CAS  Google Scholar 

  • Dittie AS, Klumperman J, Tooze SA (1999) Differential distribution of mannose-6-phosphate receptors and furin in immature secretory granules. J Cell Sci 112(Pt 22):3955–3966

    PubMed  CAS  Google Scholar 

  • Duncan RR, Greaves J, Wiegand UK et al (2003) Functional and spatial segregation of secretory vesicle pools according to vesicle age. Nature 422:176–180

    PubMed  CAS  Google Scholar 

  • Eaton BA, Haugwitz M, Lau D et al (2000) Biogenesis of regulated exocytotic carriers in neuroendocrine cells. J Neurosci 20:7334–7344

    PubMed  CAS  Google Scholar 

  • Farquhar MG, Reid JJ, Daniell LW (1978) Intracellular transport and packaging of prolactin: a quantitative electron microscope autoradiographic study of mammotrophs dissociated from rat pituitaries. Endocrinology 102:296–311

    PubMed  CAS  Google Scholar 

  • Feliciangeli S, Kitabgi P, Bidard JN (2001) The role of dibasic residues in prohormone sorting to the regulated secretory pathway. A study with proneurotensin. J Biol Chem 276:6140–6150

    PubMed  CAS  Google Scholar 

  • Fernandez CJ, Haugwitz M, Eaton B et al (1997) Distinct molecular events during secretory granule biogenesis revealed by sensitivities to brefeldin A. Mol Biol Cell 8:2171–2185

    PubMed  CAS  Google Scholar 

  • Ferraro F, Ma XM, Sobota JA et al (2007) Kalirin/Trio Rho guanine nucleotide exchange factors regulate a novel step in secretory granule maturation. Mol Biol Cell 18:4813–4825

    PubMed  CAS  Google Scholar 

  • Fukuda M (2003a) Distinct Rab binding specificity of Rim1, Rim2, rabphilin, and Noc2. Identification of a critical determinant of Rab3A/Rab27A recognition by Rim2. J Biol Chem 278:15373–15380

    PubMed  CAS  Google Scholar 

  • Fukuda M (2003b) Slp4-a/granuphilin-a inhibits dense-core vesicle exocytosis through interaction with the GDP-bound form of Rab27A in PC12 cells. J Biol Chem 278:15390–15396

    PubMed  CAS  Google Scholar 

  • Fukuda M, Kanno E (2005) Analysis of the role of Rab27 effector Slp4-a/Granuphilin-a in dense-core vesicle exocytosis. Methods Enzymol 403:445–457

    PubMed  CAS  Google Scholar 

  • Fukuda M, Kuroda TS (2002) Slac2-c (synaptotagmin-like protein homologue lacking C2 domains-c), a novel linker protein that interacts with Rab27, myosin Va/VIIa, and actin. J Biol Chem 277:43096–43103

    PubMed  CAS  Google Scholar 

  • Fukuda M, Kanno E, Saegusa C et al (2002) Slp4-a/granuphilin-a regulates dense-core vesicle exocytosis in PC12 cells. J Biol Chem 277:39673–39678

    PubMed  CAS  Google Scholar 

  • Garcia AL, Han SK, Janssen WG et al (2005) A prohormone convertase cleavage site within a predicted alpha-helix mediates sorting of the neuronal and endocrine polypeptide VGF into the regulated secretory pathway. J Biol Chem 280:41595–41608

    PubMed  CAS  Google Scholar 

  • Gasman S, Chasserot-Golaz S, Malacombe M et al (2004) Regulated exocytosis in neuroendocrine cells: a role for subplasmalemmal Cdc42/N-WASP-induced actin filaments. Mol Biol Cell 15:520–531

    PubMed  CAS  Google Scholar 

  • Gerdes HH, Rosa P, Phillips E et al (1989) The primary structure of human secretogranin-II, a widespread tyrosine-sulfated secretory granule protein that exhibits low pH- and calcium-induced aggregation. J Biol Chem 264:12009–12015

    PubMed  CAS  Google Scholar 

  • Giner D, Neco P, Frances MM et al (2005) Real-time dynamics of the F-actin cytoskeleton during secretion from chromaffin cells. J Cell Sci 118:2871–2880

    PubMed  CAS  Google Scholar 

  • Glombik MM, Gerdes HH (2000) Signal-mediated sorting of neuropeptides and prohormones: secretory granule biogenesis revisited. Biochimie 82:315–326

    PubMed  CAS  Google Scholar 

  • Glombik MM, Kromer A, Salm T et al (1999) The disulfide-bonded loop of chromogranin B mediates membrane binding and directs sorting from the trans-Golgi network to secretory granules. EMBO J 18:1059–1070

    PubMed  CAS  Google Scholar 

  • Gomi H, Mori K, Itohara S et al (2007) Rab27b is expressed in a wide range of exocytic cells and involved in the delivery of secretory granules near the plasma membrane. Mol Biol Cell 18:4377–4386

    PubMed  CAS  Google Scholar 

  • Gondre-Lewis MC, Petrache HI, Wassif CA et al (2006) Abnormal sterols in cholesterol-deficiency diseases cause secretory granule malformation and decreased membrane curvature. J Cell Sci 119:1876–1885

    PubMed  CAS  Google Scholar 

  • Gorr SU, Shioi J, Cohn DV (1989) Interaction of calcium with porcine adrenal chromogranin A (secretory protein-I) and chromogranin B (secretogranin I). Am J Physiol 257:E247–E254

    PubMed  CAS  Google Scholar 

  • Han W, Ng YK, Axelrod D et al (1999) Neuropeptide release by efficient recruitment of diffusing cytoplasmic secretory vesicles. Proc Natl Acad Sci USA 96:14577–14582

    PubMed  CAS  Google Scholar 

  • Han L, Suda M, Tsuzuki K et al (2008) A large form of secretogranin III functions as a sorting receptor for chromogranin A aggregates in PC12 cells. Mol Endocrinol 22:1935–1949

    PubMed  CAS  Google Scholar 

  • Hendy GN, Li T, Girard M et al (2006) Targeted ablation of the chromogranin a (Chga) gene: normal neuroendocrine dense-core secretory granules and increased expression of other granins. Mol Endocrinol 20:1935–1947

    PubMed  CAS  Google Scholar 

  • Hinners I, Wendler F, Fei H et al (2003) AP-1 recruitment to VAMP4 is modulated by phosphorylation-dependent binding of PACS-1. EMBO Rep 4:1182–1189

    PubMed  CAS  Google Scholar 

  • Holz RW, Brondyk WH, Senter RA et al (1994) Evidence for the involvement of Rab3A in Ca(2+)-dependent exocytosis from adrenal chromaffin cells. J Biol Chem 269:10229–10234

    PubMed  CAS  Google Scholar 

  • Hosaka M, Suda M, Sakai Y et al (2004) Secretogranin III binds to cholesterol in the secretory granule membrane as an adapter for chromogranin A. J Biol Chem 279:3627–3634

    PubMed  CAS  Google Scholar 

  • Hosaka M, Watanabe T, Sakai Y et al (2005) Interaction between secretogranin III and carboxypeptidase E facilitates prohormone sorting within secretory granules. J Cell Sci 118:4785–4795

    PubMed  CAS  Google Scholar 

  • Hotta K, Hosaka M, Tanabe A et al (2009) Secretogranin-II binds to secretogranin III and forms secretory granules with orexin, neuropeptide Y, and POMC. J Endocrinol 202:111–121

    PubMed  CAS  Google Scholar 

  • Huttner WB, Gerdes HH, Rosa P (1991) The granin (chromogranin/secretogranin) family. Trends Biochem Sci 16:27–30

    PubMed  CAS  Google Scholar 

  • Iezzi M, Escher G, Meda P et al (1999) Subcellular distribution and function of Rab3A, B, C, and D isoforms in insulin-secreting cells. Mol Endocrinol 13:202–212

    PubMed  CAS  Google Scholar 

  • Irminger JC, Verchere CB, Meyer K et al (1997) Proinsulin targeting to the regulated pathway is not impaired in carboxypeptidase E-deficient Cpefat/Cpefat mice. J Biol Chem 272:27532–27534

    PubMed  CAS  Google Scholar 

  • Ivarsson R, Jing X, Waselle L et al (2005) Myosin 5a controls insulin granule recruitment during late-phase secretion. Traffic 6:1027–1035

    PubMed  CAS  Google Scholar 

  • Jefferies KC, Cipriano DJ, Forgac M (2008) Function, structure and regulation of the vacuolar (H+)-ATPases. Arch Biochem Biophys 476:33–42

    PubMed  CAS  Google Scholar 

  • Johannes L, Lledo PM, Roa M et al (1994) The GTPase Rab3a negatively controls calcium-dependent exocytosis in neuroendocrine cells. EMBO J 13:2029–2037

    PubMed  CAS  Google Scholar 

  • Johnson RG Jr (1988) Accumulation of biological amines into chromaffin granules: a model for hormone and neurotransmitter transport. Physiol Rev 68:232–307

    PubMed  CAS  Google Scholar 

  • Kaether C, Salm T, Glombik M et al (1997) Targeting of green fluorescent protein to neuroendocrine secretory granules: a new tool for real time studies of regulated protein secretion. Eur J Cell Biol 74:133–142

    PubMed  CAS  Google Scholar 

  • Kakhlon O, Sakya P, Larijani B et al (2006) GGA function is required for maturation of neuroendocrine secretory granules. EMBO J 25:1590–1602

    PubMed  CAS  Google Scholar 

  • Katsumata O, Fujita-Yoshigaki J, Hara-Yokoyama M et al (2007) Syntaxin6 separates from GM1a-rich membrane microdomain during granule maturation. Biochem Biophys Res Commun 357:1071–1077

    PubMed  CAS  Google Scholar 

  • Kelly RB (1985) Pathways of protein secretion in eukaryotes. Science 230:25–32

    PubMed  CAS  Google Scholar 

  • Kim T, Zhang CF, Sun Z et al (2005) Chromogranin A deficiency in transgenic mice leads to aberrant chromaffin granule biogenesis. J Neurosci 25:6958–6961

    PubMed  CAS  Google Scholar 

  • Klumperman J, Kuliawat R, Griffith JM et al (1998) Mannose 6-phosphate receptors are sorted from immature secretory granules via adaptor protein AP-1, clathrin, and syntaxin 6-positive vesicles. J Cell Biol 141:359–371

    PubMed  CAS  Google Scholar 

  • Kromer A, Glombik MM, Huttner WB et al (1998) Essential role of the disulfide-bonded loop of chromogranin B for sorting to secretory granules is revealed by expression of a deletion mutant in the absence of endogenous granin synthesis. J Cell Biol 140:1331–1346

    PubMed  CAS  Google Scholar 

  • Lou H, Kim SK, Zaitsev E et al (2005) Sorting and activity-dependent secretion of BDNF require interaction of a specific motif with the sorting receptor carboxypeptidase e. Neuron 45:245–255

    PubMed  CAS  Google Scholar 

  • Lou H, Smith AM, Coates LC et al (2007) The transmembrane domain of the prohormone convertase PC3: a key motif for targeting to the regulated secretory pathway. Mol Cell Endocrinol 267:17–25

    PubMed  CAS  Google Scholar 

  • Malacombe M, Ceridono M, Calco V et al (2006) Intersectin-1 L nucleotide exchange factor regulates secretory granule exocytosis by activating Cdc42. EMBO J 25:3494–3503

    PubMed  CAS  Google Scholar 

  • Martelli AM, Baldini G, Tabellini G et al (2000) Rab3A and Rab3D control the total granule number and the fraction of granules docked at the plasma membrane in PC12 cells. Traffic 1:976–986

    PubMed  CAS  Google Scholar 

  • Martin TF, Kowalchyk JA (1997) Docked secretory vesicles undergo Ca2+ -activated exocytosis in a cell-free system. J Biol Chem 272:14447–14453

    PubMed  CAS  Google Scholar 

  • Meldolesi J (2002) Rapidly exchanging Ca(2+) stores: ubiquitous partners of surface channels in neurons. News Physiol Sci 17:144–149

    PubMed  CAS  Google Scholar 

  • Methia N, Denis CV, Wagner DD (1999) Carboxypeptidase E does not mediate von Willebrand factor targeting to storage granules. Eur J Cell Biol 78:884–891

    PubMed  CAS  Google Scholar 

  • Miyamoto S, Funatsu T, Ishiwata S et al (1993) Changes in mobility of chromaffin granules in actin network with its assembly and Ca(2+)-dependent disassembly by gelsolin. Biophys J 64:1139–1149

    PubMed  CAS  Google Scholar 

  • Molinete M, Irminger JC, Tooze SA et al (2000) Trafficking/sorting and granule biogenesis in the beta-cell. Semin Cell Dev Biol 11:243–251

    PubMed  CAS  Google Scholar 

  • Moore HP, Gumbiner B, Kelly RB (1983) Chloroquine diverts ACTH from a regulated to a constitutive secretory pathway in AtT-20 cells. Nature 302:434–436

    PubMed  CAS  Google Scholar 

  • Morvan J, Tooze SA (2008) Discovery and progress in our understanding of the regulated secretory pathway in neuroendocrine cells. Histochem Cell Biol 129:243–252

    PubMed  CAS  Google Scholar 

  • Mouchantaf R, Kumar U, Sulea T et al (2001) A conserved alpha-helix at the amino terminus of prosomatostatin serves as a sorting signal for the regulated secretory pathway. J Biol Chem 276:26308–26316

    PubMed  CAS  Google Scholar 

  • Natori S, Huttner WB (1996) Chromogranin B (secretogranin-I) promotes sorting to the regulated secretory pathway of processing intermediates derived from a peptide hormone precursor. Proc Natl Acad Sci USA 93:4431–4436

    PubMed  CAS  Google Scholar 

  • Neher E, Zucker RS (1993) Multiple calcium-dependent processes related to secretion in bovine chromaffin cells. Neuron 10:21–30

    PubMed  CAS  Google Scholar 

  • Noel G, Mains RE (1991) The ordered secretion of bioactive peptides: oldest or newest first? Mol Endocrinol 5:787–794

    PubMed  CAS  Google Scholar 

  • Orci L, Malaisse W (1980) Hypothesis: single and chain release of insulin secretory granules is related to anionic transport at exocytotic sites. Diabetes 29:943–944

    PubMed  CAS  Google Scholar 

  • Palade GE (1956) Intracisternal granules in the exocrine cells of the pancreas. J Biophys Biochem Cytol 2:417–422

    PubMed  CAS  Google Scholar 

  • Park JJ, Cawley NX, Loh YP (2008) Carboxypeptidase E cytoplasmic tail-driven vesicle transport is key for activity-dependent secretion of peptide hormones. Mol Endocrinol 22:989–1005

    PubMed  CAS  Google Scholar 

  • Parsons TD, Coorssen JR, Horstmann H et al (1995) Docked granules, the exocytic burst, and the need for ATP hydrolysis in endocrine cells. Neuron 15:1085–1096

    PubMed  CAS  Google Scholar 

  • Rehfeld JF, Bundgaard JR, Hannibal J et al (2008) The cell-specific pattern of cholecystokinin peptides in endocrine cells versus neurons is governed by the expression of prohormone convertases 1/3, 2, and 5/6. Endocrinology 149:1600–1608

    PubMed  CAS  Google Scholar 

  • Riedel D, Antonin W, Fernandez-Chacon R et al (2002) Rab3D is not required for exocrine exocytosis but for maintenance of normally sized secretory granules. Mol Cell Biol 22:6487–6497

    PubMed  CAS  Google Scholar 

  • Rindler MJ (1998) Carboxypeptidase E, a peripheral membrane protein implicated in the targeting of hormones to secretory granules, co-aggregates with granule content proteins at acidic pH. J Biol Chem 273:31180–31185

    PubMed  CAS  Google Scholar 

  • Rorsman P, Eliasson L, Renstrom E et al (2000) The cell physiology of biphasic insulin secretion. News Physiol Sci 15:72–77

    PubMed  CAS  Google Scholar 

  • Rose SD, Lejen T, Casaletti L et al (2003) Myosins-II and V in chromaffin cells: myosin V is a chromaffin vesicle molecular motor involved in secretion. J Neurochem 85:287–298

    PubMed  CAS  Google Scholar 

  • Rudolf R (2001) Bildung, Transport und Exozytose sekretorischer Granula und die funktionelle Beteiligung von Myosin Va. Naturvissenschaftlich-Mathematische Gesamtfakultät. Ruprecht-Karls Universität, Heidelberg

    Google Scholar 

  • Rudolf R, Salm T, Rustom A et al (2001) Dynamics of immature secretory granules: role of cytoskeletal elements during transport, cortical restriction, and F-actin-dependent tethering. Mol Biol Cell 12:1353–1365

    PubMed  CAS  Google Scholar 

  • Rudolf R, Kogel T, Kuznetsov SA et al (2003) Myosin Va facilitates the distribution of secretory granules in the F-actin rich cortex of PC12 cells. J Cell Sci 116:1339–1348

    PubMed  CAS  Google Scholar 

  • Schluter OM, Khvotchev M, Jahn R et al (2002) Localization versus function of Rab3 proteins. Evidence for a common regulatory role in controlling fusion. J Biol Chem 277:40919–40929

    PubMed  Google Scholar 

  • Seidah NG, Day R, Chretien M (1993) The family of pro-hormone and pro-protein convertases. Biochem Soc Trans 21(Pt 3):685–691

    PubMed  CAS  Google Scholar 

  • Seidah NG, Mayer G, Zaid A et al (2008) The activation and physiological functions of the proprotein convertases. Int J Biochem Cell Biol 40:1111–1125

    PubMed  CAS  Google Scholar 

  • Shennan KI, Taylor NA, Docherty K (1994) Calcium- and pH-dependent aggregation and membrane association of the precursor of the prohormone convertase PC2. J Biol Chem 269:18646–18650

    PubMed  CAS  Google Scholar 

  • Shibasaki T, Seino S (2005) Physical and functional interaction of noc2/rab3 in exocytosis. Methods Enzymol 403:408–419

    PubMed  CAS  Google Scholar 

  • Silverman MA, Johnson S, Gurkins D et al (2005) Mechanisms of transport and exocytosis of dense-core granules containing tissue plasminogen activator in developing hippocampal neurons. J Neurosci 25:3095–3106

    PubMed  CAS  Google Scholar 

  • Smith RE, Farquhar MG (1966) Lysosome function in the regulation of the secretory process in cells of the anterior pituitary gland. J Cell Biol 31:319–347

    PubMed  CAS  Google Scholar 

  • Song L, Fricker LD (1995) Calcium- and pH-dependent aggregation of carboxypeptidase E. J Biol Chem 270:7963–7967

    PubMed  CAS  Google Scholar 

  • Sorensen JB (2004) Formation, stabilisation and fusion of the readily releasable pool of secretory vesicles. Pflugers Arch 448:347–362

    PubMed  CAS  Google Scholar 

  • Sossin WS, Sweet-Cordero A, Scheller RH (1990) Dale’s hypothesis revisited: different neuropeptides derived from a common prohormone are targeted to different processes. Proc Natl Acad Sci USA 87:4845–4848

    PubMed  CAS  Google Scholar 

  • Steiner DF (1998) The proprotein convertases. Curr Opin Chem Biol 2:31–39

    PubMed  CAS  Google Scholar 

  • Tabellini G, Baldini G, Baldini GM et al (2001) Localization of the small monomeric GTPases Rab3D and Rab3A in the AtT-20 rat pituitary cell line. Eur J Histochem 45:347–356

    PubMed  CAS  Google Scholar 

  • Tam WW, Andreasson KI, Loh YP (1993) The amino-terminal sequence of pro-opiomelanocortin directs intracellular targeting to the regulated secretory pathway. Eur J Cell Biol 62:294–306

    PubMed  CAS  Google Scholar 

  • Taupenot L, Harper KL, Mahapatra NR et al (2002) Identification of a novel sorting determinant for the regulated pathway in the secretory protein chromogranin A. J Cell Sci 115: 4827–4841

    PubMed  CAS  Google Scholar 

  • Tchakarov LE, Zhang L, Rose SD et al (1998) Light and electron microscopic study of changes in the organization of the cortical actin cytoskeleton during chromaffin cell secretion. J Histochem Cytochem 46:193–203

    PubMed  CAS  Google Scholar 

  • Thiagarajan R, Tewolde T, Li Y et al (2004) Rab3A negatively regulates activity-dependent modulation of exocytosis in bovine adrenal chromaffin cells. J Physiol 555:439–457

    PubMed  CAS  Google Scholar 

  • Thiele C, Gerdes HH, Huttner WB (1997) Protein secretion: puzzling receptors. Curr Biol 7:R496–R500

    PubMed  CAS  Google Scholar 

  • Thomas P, Wong JG, Almers W (1993) Millisecond studies of secretion in single rat pituitary cells stimulated by flash photolysis of caged Ca2+. EMBO J 12:303–306

    PubMed  CAS  Google Scholar 

  • Tooze SA (1998) Biogenesis of secretory granules in the trans-Golgi network of neuroendocrine and endocrine cells. Biochim Biophys Acta 1404:231–244

    PubMed  CAS  Google Scholar 

  • Tooze SA, Huttner WB (1990) Cell-free protein sorting to the regulated and constitutive secretory pathways. Cell 60:837–847

    PubMed  CAS  Google Scholar 

  • Tooze J, Tooze SA (1986) Clathrin-coated vesicular transport of secretory proteins during the formation of ACTH-containing secretory granules in AtT20 cells. J Cell Biol 103:839–850

    PubMed  CAS  Google Scholar 

  • Tooze SA, Flatmark T, Tooze J et al (1991) Characterization of the immature secretory granule, an intermediate in granule biogenesis. J Cell Biol 115:1491–1503

    PubMed  CAS  Google Scholar 

  • Trifaro J, Rose SD, Lejen T et al (2000) Two pathways control chromaffin cell cortical F-actin dynamics during exocytosis. Biochimie 82:339–352

    PubMed  CAS  Google Scholar 

  • Trybus KM (2008) Myosin V from head to tail. Cell Mol Life Sci 65:1378–1389

    PubMed  CAS  Google Scholar 

  • Tsuboi T, Fukuda M (2005) The C2B domain of rabphilin directly interacts with SNAP-25 and regulates the docking step of dense core vesicle exocytosis in PC12 cells. J Biol Chem 280:39253–39259

    PubMed  CAS  Google Scholar 

  • Tsuboi T, Fukuda M (2006) The Slp4-a linker domain controls exocytosis through interaction with Munc18–1.syntaxin-1a complex. Mol Biol Cell 17:2101–2112

    PubMed  CAS  Google Scholar 

  • Tyska MJ, Mooseker MS (2003) Myosin-V motility: these levers were made for walking. Trends Cell Biol 13:447–451

    PubMed  CAS  Google Scholar 

  • Urbe S, Dittie AS, Tooze SA (1997) pH-dependent processing of secretogranin II by the endopeptidase PC2 in isolated immature secretory granules. Biochem J 321(Pt 1):65–74

    PubMed  CAS  Google Scholar 

  • Urbe S, Page LJ, Tooze SA (1998) Homotypic fusion of immature secretory granules during maturation in a cell-free assay. J Cell Biol 143:1831–1844

    PubMed  CAS  Google Scholar 

  • Varadi A, Tsuboi T, Johnson-Cadwell LI et al (2003) Kinesin-I and cytoplasmic dynein orchestrate glucose-stimulated insulin-containing vesicle movements in clonal MIN6 beta-cells. Biochem Biophys Res Commun 311:272–282

    PubMed  CAS  Google Scholar 

  • Varadi A, Tsuboi T, Rutter GA (2005) Myosin Va transports dense core secretory vesicles in pancreatic MIN6 beta-cells. Mol Biol Cell 16:2670–2680

    PubMed  CAS  Google Scholar 

  • Varlamov O, Eng FJ, Novikova EG et al (1999) Localization of metallocarboxypeptidase D in AtT-20 cells, Potential role in prohormone processing. J Biol Chem 274:14759–14767

    PubMed  CAS  Google Scholar 

  • Vischer UM, Wagner DD (1994) von Willebrand factor proteolytic processing and multimerization precede the formation of Weibel-Palade bodies. Blood 83:3536–3544

    PubMed  CAS  Google Scholar 

  • Vitale ML, Seward EP, Trifaro JM (1995) Chromaffin cell cortical actin network dynamics control the size of the release-ready vesicle pool and the initial rate of exocytosis. Neuron 14:353–363

    PubMed  CAS  Google Scholar 

  • von Ruden L, Neher E (1993) A Ca-dependent early step in the release of catecholamines from adrenal chromaffin cells. Science 262:1061–1065

    Google Scholar 

  • Wang F, Chen L, Arcucci O et al (2000) Effect of ADP and ionic strength on the kinetic and motile properties of recombinant mouse myosin V. J Biol Chem 275:4329–4335

    PubMed  CAS  Google Scholar 

  • Wasmeier C, Hutton JC (2001) Secretagogue-dependent phosphorylation of the insulin granule membrane protein phogrin is mediated by cAMP-dependent protein kinase. J Biol Chem 276:31919–31928

    PubMed  CAS  Google Scholar 

  • Watanabe M, Nomura K, Ohyama A, Ishikaw, R, Komiya Y, Hosaka K, Yamauchi E, Taniguchi H, Sasakawa N, Kumakura et al (2005). Myosin-Va Regulates Exocytosis through the Submicromolar Ca2+-dependent Binding of Syntaxin-1A. Mol Biol Cell 16:4519–4530

    PubMed  CAS  Google Scholar 

  • Weber E, Jilling T, Kirk KL (1996) Distinct functional properties of Rab3A and Rab3B in PC12 neuroendocrine cells. J Biol Chem 271:6963–6971

    PubMed  CAS  Google Scholar 

  • Wendler F, Page L, Urbe S et al (2001) Homotypic fusion of immature secretory granules during maturation requires syntaxin 6. Mol Biol Cell 12:1699–1709

    PubMed  CAS  Google Scholar 

  • Yi Z, Yokota H, Torii S et al (2002) The Rab27a/granuphilin complex regulates the exocytosis of insulin-containing dense-core granules. Mol Cell Biol 22:1858–1867

    PubMed  CAS  Google Scholar 

  • Zhao S, Torii S, Yokota-Hashimoto H et al (2002) Involvement of Rab27b in the regulated secretion of pituitary hormones. Endocrinology 143:1817–1824

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Hermann Gerdes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kögel, T., Gerdes, HH. (2009). Maturation of Secretory Granules. In: Rehfeld, J., Bundgaard, J. (eds) Cellular Peptide Hormone Synthesis and Secretory Pathways. Results and Problems in Cell Differentiation, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2009_31

Download citation

Publish with us

Policies and ethics