Skip to main content

Neurotensin and Neuromedin N Are Differentially Processed from a Common Precursor by Prohormone Convertases in Tissues and Cell Lines

  • Chapter
  • First Online:

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 50))

Abstract

Neurotensin (NT) is synthesized as part of a larger precursor that also contains neuromedin N (NN), a six amino acid NT-like peptide. NT and NN are located in the C-terminal region of the precursor (pro-NT/NN) where they are flanked and separated by three Lys–Arg sequences. A fourth dibasic sequence is present in the middle of the precursor. Dibasics are the consensus sites recognized and cleaved by specialized endoproteases that belong to the family of proprotein convertases (PCs). In tissues that express pro-NT/NN, the three C-terminal Lys–Arg sites are differentially processed, whereas the middle dibasic is poorly cleaved. Processing gives rise mainly to NT and NN in the brain, NT and a large peptide with a C-terminal NN moiety (large NN) in the gut, and NT, large NN, and a large peptide with a C-terminal NT moiety (large NT) in the adrenals. Recent evidence indicates that PC1, PC2, and PC5-A are the prohormone convertases responsible for the processing patterns observed in the gut, brain, and adrenals, respectively. As NT, NN, large NT, and large NN are all endowed with biological activity, the evidence reviewed here supports the idea that posttranslational processing of pro-NT/NN in tissues may generate biological diversity of pathophysiological relevance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Barbero P, Rovère C, De Bie I et al (1998) PC5-A-mediated processing of pro-neurotensin in early compartments of the regulated secretory pathway of PC5-transfected PC12 cells. J Biol Chem 273:25339–25346

    Article  PubMed  CAS  Google Scholar 

  • Beck B (2000) Neuropeptides and obesity. Nutrition 16:916–923

    Article  PubMed  CAS  Google Scholar 

  • Bidard JN, de Nadai F, Rovère C et al (1993) Immunological and biochemical characterization of processing products from the neurotensin/neuromedin N precursor in the rat medullary thyroid carcinoma 6–23 cell line. Biochem J 291:225–233

    PubMed  CAS  Google Scholar 

  • Caceda R, Kinkead B, Nemeroff CB (2006) Neurotensin: role in psychiatry and neurological diseases. Peptides 27:2385–2404

    Article  PubMed  CAS  Google Scholar 

  • Carraway RE, Ferris CF (1983) Isolation, biological and chemical characterization, and synthesis of a neurotensin-related hexapeptide from chicken intestine. J Biol Chem 258:2474–2479

    Google Scholar 

  • Carraway RE, Leeman SE (1973) The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami. J Biol Chem 248:6854–6861

    PubMed  CAS  Google Scholar 

  • Carraway RE, Mitra SP (1990) Differential processing of neurotensin/neuromedin N precursor(s) in canine brain and intestine. J Biol Chem 265:8627–8631

    PubMed  CAS  Google Scholar 

  • Carraway RE, Mitra SP (1991) Purification of large neuromedin N (NMN) from canine intestine and its identification as NMN-125. Biochem Biophys Res Commun 179:301–308

    Article  PubMed  CAS  Google Scholar 

  • Carraway RE, Plona AM (2006) Involvement of neurotensin in cancer growth: evidence, mechanisms and development of diagnostic tools. Peptides 27:2445–2460

    Article  PubMed  CAS  Google Scholar 

  • Carraway RE, Mitra SP, Spaulding G (1992) Posttranslational processing of the neurotensin/neuromedin N precursor. Ann NY Acad Sci 668:1–16

    Article  PubMed  CAS  Google Scholar 

  • Carraway RE, Bullock BP, Dobner PR (1993) Induction of the neurotensin (NT) gene in PC12 cells gives rise to NT precursor ( 88%), NT(3–13)-like peptide ( 10%), and NT ( 2%). Peptides 14:991–999

    Article  PubMed  CAS  Google Scholar 

  • Carraway RE, Mitra SP, Evers BM et al (1994) BON cells display the intestinal pattern of neurotensin/neuromedin N precursor processing. Regul Pept 53:17–29

    Article  PubMed  CAS  Google Scholar 

  • De Bie I, Marcinkiewicz M, Malide D et al (1996) The isoforms of proprotein convertase PC5 are sorted to different subcellular compartment. J Cell Biol 135:1261–1275

    Article  PubMed  Google Scholar 

  • de Nadai F, Rovère C, Bidard JN et al (1993) Biosynthesis and posttranslational processing of the neurotensin/neuromedin N precursor in the rat medullary thyroid carcinoma 6–23 cell line: effect of dexamethasone. Endocrinology 132:1614–1620

    Article  PubMed  Google Scholar 

  • de Nadai F, Rovère C, Bidard JN et al (1994) Post-translational processing of the neurotensin/neuromedin N precursor in the central nervous system of the rat-I: biochemical characterization of maturation products. Neuroscience 60:159–166

    Article  PubMed  Google Scholar 

  • Dobner PR (2006) Neurotensin and pain modulation. Peptides 27:2405–2414

    Article  PubMed  CAS  Google Scholar 

  • Dobner PR, Barber D, Villa-Komaroff L et al (1987) Cloning and sequencing of cDNA for the canine neurotensin/neuromedin N precursor. Proc Natl Acad Sci USA 84:3516–3520

    Article  PubMed  CAS  Google Scholar 

  • Ernst A, Hellmich S, Bergmann A (2006) Proneurotensin 1–117, a stable neurotensin precursor fragment identified in human circulation. Peptides 27:1787–1793

    Article  PubMed  CAS  Google Scholar 

  • Evers BM (2006) Neurotensin and growth of normal and neoplastic tissues. Peptides 27:2424–2433

    Article  PubMed  Google Scholar 

  • Feliciangeli S, Kitabgi P, Bidard JN (2001) The role of dibasic residues in prohormone sorting to the regulated secretory pathway; A study with proneurotensin. J Biol Chem 276:6140–6150

    Article  PubMed  CAS  Google Scholar 

  • Fricker LD, Evans CJ, Each FS et al (1986) Cloning and sequence analysis of cDNA for bovine carboxypeptidase E. Nature 323:461–464

    Article  PubMed  CAS  Google Scholar 

  • Friry C, Feliciangeli S, Richard F et al (2002) Production of recombinant large proneurotensin/neuromedin N-derived peptides and characterization of their binding and biological activity. Biochem Biophys Res Commun 290:1161–1168

    Article  PubMed  CAS  Google Scholar 

  • Geisler S, Bérod A, Zahm DS et al (2006) Brain neurotensin, psychostimulants, and stress – emphasis on neuroanatomical substrates. Peptides 27:2364–2384

    Article  PubMed  CAS  Google Scholar 

  • Kislauskis E, Dobner PR (1990) Mutually dependent response elements in the cis-regulatory region of the neurotensin/neuromedin N gene integrate environmental stimuli in PC12 cells. Neuron 4:783–795

    Article  PubMed  CAS  Google Scholar 

  • Kislauskis E, Bullock B, McNeil S et al (1988) The rat gene encoding neurotensin and neuromedin N: structure, tissue specific expression, and evolution of exon sequences. J Biol Chem 263:4963–4968

    PubMed  CAS  Google Scholar 

  • Kitabgi P (2006) Differential processing of pro-neurotensin/neuromedin N and relationship to prohormone convertases. Peptides 27:2508–2514

    Article  PubMed  CAS  Google Scholar 

  • Kitabgi P, Carraway R, Leeman SE (1976) Isolation of a tridecapeptide from bovine intestinal tissue and its partial characterization as neurotensin. J Biol Chem 251:7053–7058

    PubMed  CAS  Google Scholar 

  • Leeman SE, Carraway RE (1982) Neurotensin: discovery, isolation, characterization, synthesis and possible physiological roles. Ann NY Acad Sci 400:1–16

    Article  PubMed  CAS  Google Scholar 

  • Mains RE, Dickerson IM, May V et al (1990) Cellular and molecular aspects of peptide-hormone biosynthesis. Front Neuroendocrinol 11:52–89

    Google Scholar 

  • Minamino N, Kangawa K, Matsuo H (1984) Neuromedin N: a novel neurotensin like peptide identified in porcine spinal cord. Biochem Biophys Res Commun 120:542–549

    Article  Google Scholar 

  • Naggert JK, Fricker LD, Varlamov O et al (1995) Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nat Genet 10:135–142

    Article  PubMed  CAS  Google Scholar 

  • Ogura S, Kaneko K, Miyajima S et al (2008) Proneurotensin/neuromedin N secreted from small cell lung carcinoma cell lines as a potential tumor marker. Proteomics Clin Appl 2:1620–1627

    Article  PubMed  CAS  Google Scholar 

  • Rovère C, de Nadai F, Bidard JN et al (1993) PC12 cells can be induced to produce, but do not process, the neurotensin/neuromedin N precursor. Peptides 14:983–989

    Article  PubMed  Google Scholar 

  • Rovère C, Barbero P, Kitabgi P (1996a) Evidence that PC2 is the endogenous pro-neurotensin convertase in rMTC 6–23 cells and that PC1- and PC2- transfected PC12 cells differentially process pro-neurotensin. J Biol Chem 271:11368–11375

    Article  PubMed  Google Scholar 

  • Rovère C, Viale A, Nahon JL et al (1996b) Impaired processing of brain proneurotensin and promelanin-concentrating hormone in obese fat/fat mice. Endocrinology 137:2954–2958

    Article  PubMed  Google Scholar 

  • Rovère C, Barbero P, Maoret JJ et al (1998) Pro-neurotensin/neuromedin N expression and processing in human colon cancer cell lines. Biochem Biophys Res Commun 246:155–159

    Article  PubMed  Google Scholar 

  • Shaw C, McKay D, Johnston CF et al (1990) Differential processing of the neurotensin/neuromedin N precursor in the mouse. Peptides 11:227–236

    Article  PubMed  CAS  Google Scholar 

  • Udupi V, Lee HM, Kurosky A et al (1999) Prohormone convertase-1 is essential for conversion of chromogranin A to pancreastatin. Regul Pept 15:123–127

    Article  Google Scholar 

  • Villeneuve P, Lafortune L, Seidah NG et al (2000a) Immunohistochemical evidence for the involvement of protein convertases 5A and 2 in the processing of pro-neurotensin in rat brain. J Comp Neurol 424:461–475

    Article  PubMed  CAS  Google Scholar 

  • Villeneuve P, Seidah NG, Beaudet A (2000b) Immunohistochemical evidence for the implication of PC1 in the processing of proneurotensin in rat brain. Neuroreport 11:3443–3447

    Article  PubMed  CAS  Google Scholar 

  • Villeneuve P, Feliciangeli S, Croissandeau G et al (2002) Altered processing of the neurotensin/neuromedin N precursor in PC2 knock down mice: a biochemical and immunochemical study. J Neurochem 82:783–793

    Article  PubMed  CAS  Google Scholar 

  • Woulfe J, Lafortune L, de Nadai F et al (1994) Post-translational processing of the neurotensin/neuromedin N precursor in the central nervous system of the rat—II: immunohistochemical localization of maturation products. Neuroscience 60:167–181

    Article  PubMed  CAS  Google Scholar 

  • Zeytinoglu FN, Gagel RF, Tashjian AH Jr et al (1980) Characterization of neurotensin production by a line of rat medullary thyroid carcinoma cells. Proc Natl Acad Sci USA 77:3741–3745

    Article  PubMed  CAS  Google Scholar 

  • Zhao D, Pothoulakis C (2006) Effects of NT on gastrointestinal motility and secretion, and role in intestinal inflammation. Peptides 27:2434–2444

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Kitabgi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kitabgi, P. (2009). Neurotensin and Neuromedin N Are Differentially Processed from a Common Precursor by Prohormone Convertases in Tissues and Cell Lines. In: Rehfeld, J., Bundgaard, J. (eds) Cellular Peptide Hormone Synthesis and Secretory Pathways. Results and Problems in Cell Differentiation, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2009_27

Download citation

Publish with us

Policies and ethics