Skip to main content

Actin in Axons: Stable Scaffolds and Dynamic Filaments

  • Chapter
  • First Online:

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 48))

Abstract

Actin filaments are thin polymers of the 42 kD protein actin. In mature axons a network of subaxolemmal actin filaments provide stability for membrane integrity and a substrate for short distance transport of cargos. In developing neurons dynamic regulation of actin polymerization and organization mediates axonal morphogenesis and axonal pathfinding to synaptic targets. Other changes in axonal shape, collateral branching, branch retraction, and axonal regeneration, also depend on actin filament dynamics. Actin filament organization is regulated by a diversity of actin-binding proteins (ABP). ABP are the focus of complex extrinsic and intrinsic signaling pathways, and many neurological pathologies and dysfunctions arise from defective regulation of ABP function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aizawa H, Wakatsuki S, Ishii A, Moriyama K, Sasaki Y, Ohasi K, Sekine-Aizawa Y, Sehara-Fujisawa A, Mizuno K, Goshima Y, Yahara I (2001) Phosphorylation of cofilin by LIM-kinase is necessary for semaphorin 3A-induced growth cone collapse. Nat Neurosci 4:367–373

    Article  PubMed  CAS  Google Scholar 

  • Bearer EL, Reese TS (1999) Association of actin filaments with axonal microtubule tracts. J Neurocytol 28:85–98

    Article  PubMed  CAS  Google Scholar 

  • Bennett V, Baines AJ (2001) Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 81:1353–1392

    PubMed  CAS  Google Scholar 

  • Benowitz LI, Routtenberg A (1997) GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci 20:84–91

    Article  PubMed  CAS  Google Scholar 

  • Bentley D, O’Connor TP (1994) Cytoskeletal events in growth cone steering. Curr Opin Neurobiol 4:43–48

    Article  PubMed  CAS  Google Scholar 

  • Bernstein BW, Maloney MT, Bamburg JR (2009) Actin and diseases of the nervous system. In:Gallo G, Lanier L (eds) Neurobiology of actin: from neuralation to synaptic function. Springer, Berlin (in press)

    Google Scholar 

  • Bray D, Chapman K (1985) Analysis of microspike movements on the neuronal growth cone. J Neurosci 5:3204–3213

    PubMed  CAS  Google Scholar 

  • Bray D, Thomas C, Shaw G (1978) Growth cone formation in cultures of sensory neurons. Proc Natl Acad Sci U S A 75:5226–5269

    Article  PubMed  CAS  Google Scholar 

  • Bridgman PC (2004) Myosin-dependent transport in neurons. J Neurobiol 58:164–174

    Article  PubMed  CAS  Google Scholar 

  • Bridgman PC (2009) Myosin motor proteins in the cell biology of axons and other neuronal compartments. Results Probl Cell Differ. doi: 10.1007/400_2009_10

    Google Scholar 

  • Brown J, Bridgman PC (2003) Role of myosin II in axon outgrowth. J Histochem Cytochem 51:421–428

    Google Scholar 

  • Buchstaller A, Jay DG (2000) Micro-scale chromophore-assisted laser inactivation of nerve growth cone proteins. Microsc Res Tech 48:97–106

    Article  PubMed  CAS  Google Scholar 

  • Chien CB, Rosenthal DE, Harris WA, Holt CE (1993) Navigational errors made by growth cones without filopodia. Neuron 11:237–251

    Google Scholar 

  • Clark SE, Moss DJ, Bray D (1983) Actin polymerization and synthesis in cultured neurons. Exp Cell Res 147:303–314

    Article  PubMed  CAS  Google Scholar 

  • Craig AM, Banker G (1994) Neuronal polarity. Annu Rev Neurosci 17:267–310

    Article  PubMed  CAS  Google Scholar 

  • Cypher C, Letourneau PC (1991) Identification of cytoskeletal, focal adhesion and cell adhesion proteins in growth cone particles isolated from developing chick brain. J Neurosci Res 30:259–265

    Article  PubMed  CAS  Google Scholar 

  • Dent EW, Gertler FB (2003) Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40:209–222

    Article  PubMed  CAS  Google Scholar 

  • Dent EW, Barnes AM, Tang F, Kalil K (2004) Netrin-1 and Semaphorin 3A promote or inhibit cortical axon branching, respectively by reorganization of the cytoskeleton. J Neurosci 24:3002–3012

    Article  PubMed  CAS  Google Scholar 

  • Dent EW, Kwiatkowski AV, Mebane LM, Philippar U, Barzik M, Rubinson DA, Gupton S, Van Veen JE, Furman C, Zhang J, Alberts AS, Mori S, Gertler FB (2007) Filopodia are required for cortical neurite initiation. Nat Cell Biol 9:1347–1359

    Article  PubMed  CAS  Google Scholar 

  • Devineni N, Minamide LS, Niu M, Safer D, Verma R, Bamburg JR, Nachmias VT (1999) A quantitative analysis of G-actin binding proteins and the G-actin pool in developing chick brain. Brain Res 823:129–140

    Article  PubMed  CAS  Google Scholar 

  • Dillon C, Goda Y (2005) The actin cytoskeleton: integrating form and function at the synapse. Annu Rev Neurosci 28:25–55

    Article  PubMed  CAS  Google Scholar 

  • Dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA, Nosworthy NJ (2003) Actin-binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 83:433–473

    PubMed  CAS  Google Scholar 

  • Eng H, Lund K, Campenot RB (1999) Synthesis of β-tubulin, actin and other proteins in axons of sympathetic neurons in compartmented cultures. J Neursci 19:1–9

    CAS  Google Scholar 

  • Esch T, Lemmon V, Banker G (1999) Local presentation of substrate molecules directs axon specification by cultured hippocampal neurons. J Neurosci 19:6417–6426

    PubMed  CAS  Google Scholar 

  • Evans LL, Bridgman PC (1995) Particles move along actin filament bundles in nerve growth cones. Proc Natl Acad Sci U S A 92:10954–10958

    Article  PubMed  CAS  Google Scholar 

  • Falnikar A, Baas PW (2009) Critical roles for microtubules in axonal development and disease. Results Probl Cell Differ. doi: 10.1007/400_2009_2

    Google Scholar 

  • Fass JN, Odde DJ (2003) Tensile force-dependent neurite elicitation via anti-β1 integrin antibody-coated magnetic beads. Biophys J 85:623–636

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Walsh CA (2004) The many faces of filamin: a versatile molecular scaffold for cell motility and signaling. Nat Cell Biol 6:1034–1038

    Article  PubMed  CAS  Google Scholar 

  • Galbraith JA, Gallant PE (2000) Axonal transport of tubulin and actin. J Neurocytol 29:889–9111

    Article  PubMed  CAS  Google Scholar 

  • Gallo G (2006) Rho-kinase coordinates F-actin organization and myosin II activity during semaphorin3A-induced axon retraction. J Cell Sci 119:3413–3423

    Article  PubMed  CAS  Google Scholar 

  • Gallo G (2008) Semaphorin 3Ainhibits ERM phosphorylation in growth cone filopodia through inactivation of PI3K. Dev Neurobiol 68:926–933

    Article  PubMed  CAS  Google Scholar 

  • Gallo G, Letourneau PC (1998) Localized sources of neurotrophins initiate axon collateral sprouting. J Neurosci 18:5403–5414

    PubMed  CAS  Google Scholar 

  • Gallo G, Letourneau PC (2000) Neurotrophins and the dynamic regulation of the neuronal cytoskeleton. J Neurobiol 44:159–173

    Article  PubMed  CAS  Google Scholar 

  • Gallo G, Lefcort FB, Letourneau PC (1997) The trkA receptor mediates growth cone turning toward a localized source of nerve growth factor. J Neurosci 17:5445–5454

    PubMed  CAS  Google Scholar 

  • Geraldo S, Khanzada UK, Parsons M, Chilton JK, Gordon-Weeks PR (2008) Targeting of the F-actin-binding protein drebrin by the microtubule plus-tip protein EB3 is required for neuritogenesis Nat Cell Biol 10:1181–1189

    Article  PubMed  CAS  Google Scholar 

  • Gervasi NM, Kwok JC, Fawcett JW (2008) Role of extracellular factors in axon regeneration in the CNS: implications for therapy. Regen Med 3:907–923

    Article  PubMed  Google Scholar 

  • Gomez TM, Letourneau PC (1994) Filopodia initiate choices made by sensory neuron growth cones at laminin/fibronectin borders in vitro. J Neurosci 14:5959–5972

    PubMed  CAS  Google Scholar 

  • Halpain S (2003) Actin in a supporting role. Nat Neurosci 6:101–102

    Article  PubMed  CAS  Google Scholar 

  • Hammarback JA, Letourneau PC (1985) Neurite extension across regions of low cell-substratum adhesivity: implications for the guidepost hypothesis of axonal pathfinding. Dev Biol 117:655–662

    Article  Google Scholar 

  • Hammarlund M, Jorgensen EM, Bastiani MJ (2007) Axons break in animals lacking β-spectrin. J Cell Biol 176:269–275

    Article  PubMed  CAS  Google Scholar 

  • Hasaka TP, Myers KA, Baas PW (2004) Role of actin filaments in the axonal transport of microtubules. J Neurosci 24:11291–11301

    Article  PubMed  CAS  Google Scholar 

  • Heidemann SR, Lamoureux P, Buxbaum RE (1995) Cytomechanics of axonal development. Cell Biochem Biophys 27:135–155

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa N (1982) Cross-linker system between neurofilament, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. J Cell Biol 94:129–142

    Article  PubMed  CAS  Google Scholar 

  • Hollenbeck PJ, Saxton WM (2005) The axonal transport of mitochondria. J Cell Sci 118:5411–5419

    Article  PubMed  CAS  Google Scholar 

  • Jung C, Chylinski TM, Pimenta A, Ortiz D, Shea TB (2004) Neurofilament transport is dependent on actin and myosin. J Neurosci 24:9486–9496

    Article  PubMed  CAS  Google Scholar 

  • Kalil K, Szebenyi G, Dent EW (2000) Common mechanisms underlying growth cone guidance and axon branching. J Neurobiol 44:145–158

    Article  PubMed  CAS  Google Scholar 

  • Ketschek AR, Jones SL, Gallo G (2007) Axon extension in the fast and slow lanes: substrate-dependent engagement of myosin II functions. Dev Neurobiol 67:1305–1320

    Article  PubMed  CAS  Google Scholar 

  • Koenig E (2009) Organized ribosome-containing structural domains in axons. Results Probl Cell Differ, doi: 10.1007/400_2008_29

    Google Scholar 

  • Kollins KM, Hu J, Bridgman PC, Huang YQ, Gallo G (2009) Myosin-II negatively regulates minor process extension and the temporal development of neuronal polarity. Dev Neurobiol 69:279–298

    Article  PubMed  CAS  Google Scholar 

  • Kubo T, Yamashita T (2007) Rho-ROCK inhibitors for the treatment of CNS injury. Recent Pat CNS Drug Discov 2:173–179

    Article  PubMed  CAS  Google Scholar 

  • Lalli G, Gschmeissner S, Schiavo G (2003) Myosin Va and microtubule-based motors are required for fast axonal retrograde transport of tetanus toxin in motor neurons. J Cell Sci 116:4639–4650

    Article  PubMed  CAS  Google Scholar 

  • Lamoureux P, Ruthel G, Buxbaum RE, Heidemann SR (2002) Mechanical tension can specify axonal fate in hippocampal neurons. J Cell Biol 159:499–508

    Article  PubMed  CAS  Google Scholar 

  • Langford GM (2002) Myosin-V, a versatile motor for short range vesicle transport. Traffic 3:859–865

    Article  PubMed  CAS  Google Scholar 

  • Lau P-m, Zucker RS, Bentley D (1999) Induction of filopodia by direct elevation of intracellular calcium ion concentration. J Cell Biol 145:1265–1276

    Article  PubMed  CAS  Google Scholar 

  • Lebrand C, Dent EW, Strasser GA, Lanier LM, Krause M, Svitkina TM, Borisy GG, Gertler FB (2004) Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of netrin-1. Neuron 42:37–49

    Article  Google Scholar 

  • Lee SK, Hollenbeck PJ (2003) Organization and translation of mRNA in sympathetic axons. J Neurosci 23:8618–8624

    Google Scholar 

  • Letourneau PC (1979) Cell-substratum adhesion of neurite growth cones and its role in neurite elongation. Exp Cell Res 124:127–138

    Article  PubMed  CAS  Google Scholar 

  • Letourneau PC (1981) Immunocytochemical evidence for colocalization in neurite growth cones of actin and myosin and their relationship to cell-substratum adhesions. Dev Biol 85:113–122

    Google Scholar 

  • Letourneau PC (1983) Differences in the distribution of actin filaments between growth cones and the neurites of cultured chick sensory neurons. J Cell Biol 97:963–973

    Article  PubMed  CAS  Google Scholar 

  • Letourneau PC (1996) The cytoskeleton in nerve growth cone motility and axonal pathfinding. Perspect Dev Neurobiol 4:111–123

    PubMed  CAS  Google Scholar 

  • Letourneau PC, Shattuck TA, Ressler AH (1987) Push and pull in neurite elongation: observations on the effects of different concentrations of cytochalasin B and taxol. Cell Motil Cytoskeleton 8:193–209

    Article  PubMed  CAS  Google Scholar 

  • Lin AC, Holt CE (2007) Local translation and directional steering in axons. EMBO J 26:3729–3736

    Article  PubMed  CAS  Google Scholar 

  • Loudon RP, Silver LD, Yee HF, Gallo G (2006) RhoA-kinase and myosin II are required for the maintenance of growth cone polarity and guidance by nerve growth factor. J Neurobiol 66:847–867

    Article  PubMed  CAS  Google Scholar 

  • Luo L (2002) Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. Annu Rev Cell Dev Biol 18:601–635

    Article  PubMed  CAS  Google Scholar 

  • Luo L, O’Leary DDM (2005) Axon retraction and degeneration in development and disease. Annu Rev Neurosci 28:127–156

    Article  PubMed  CAS  Google Scholar 

  • Marsh LM, Letourneau PC (1984) Growth of neurites without filopodial or lamellipodial activity in the presence of cytochalasin B, J Cell Biol 99:2041–2047

    Article  PubMed  CAS  Google Scholar 

  • Miller KE, Sheetz MP (2006) Direct evidence for coherent low velocity axonal transport of mitochondria. J Cell Biol 173:373–381

    Article  PubMed  CAS  Google Scholar 

  • Morris CE (2001) Mechanoprotection of the plasma membrane in neurons and other non-erythroid cells by the spectrin-based membrane skeleton. Cell Mol Biol Lett 6:703–720

    PubMed  CAS  Google Scholar 

  • Morris RL, Hollenbeck PJ (1995) Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. J Cell Biol 131:1315–1326

    Article  PubMed  CAS  Google Scholar 

  • Muslimov IA, Titmus M, Koenig E, Tiedge H (2002) Transport of neuronal BC1 RNA in Mauthner axons. J Neurosci 22:4293–4301

    PubMed  CAS  Google Scholar 

  • Myers KA, Baas PW (2009) Microtubule-actin interactions during neuronal development. In: Gallo G, Lanier L (eds) Neurobiology of actin: from neuralation to synaptic function. Springer, Berlin (in press)

    Google Scholar 

  • Okabe S, Hirokawa N (1990) Turnover of fluorescently labeled tubulin and actin in the axon. Nature 343:479–482

    Article  PubMed  CAS  Google Scholar 

  • Okabe S, Hirokawa N (1991) Actin dynamics in growth cones. J Neurosci 11:1918–1929

    PubMed  CAS  Google Scholar 

  • Pak CW, Flynn KC, Bamburg JR (2008) Actin-binding proteins take the reins in growth cones. Nat Rev Neurosci 9:136–147

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465

    Article  PubMed  CAS  Google Scholar 

  • Raivich G, Makwana M (2007) The making of successful axonal regeneration: genes, molecules and signal transduction pathways. Brain Res Rev 53:287–311

    Article  PubMed  CAS  Google Scholar 

  • Ramesh V (2004) Merlin and the ERM proteins in Schwann cells, neurons and growth cones. Nat Rev Neurosci 5:462–470

    Article  PubMed  CAS  Google Scholar 

  • Reynolds AJ, Heydon K, Bartlett SE, Hendry IA (1999) Evidence for phosphatidylinositol 4-kinase and actin involvement in the regulation of 125I-β-nerve growth factor retrograde axonal transport. J Neurochem 73:87–95

    Article  PubMed  CAS  Google Scholar 

  • Rosner H, Moller W, Wassermann T, Mihatsch, Blum M (2007) Attenuation of actomyosin II contractile activity in growth cones accelerates filopodia-guided and microtubule-based neurite elongation. Brain Res 1176:1–10

    Article  PubMed  Google Scholar 

  • Roy S, Winton MJ, Black MM, Tronjanowski JQ, Lee VMY (2008) Cytoskeletal requirements in axonal transport of slow component-b. J Neurosci 28:5248–5256

    Article  PubMed  CAS  Google Scholar 

  • Santerre RF, Rich A (1976) Actin accumulation in developing chick brain and other tissues. Dev Biol 54:1–12

    Article  PubMed  CAS  Google Scholar 

  • Schaefer AW, Schoonderwoert VTG, Lin J, Mederios N, Danuser G, Forscher P (2008) Coordination of actin filament and microtubule dynamics during neurite outgrowth. Dev Cell 15:146–162

    Article  PubMed  CAS  Google Scholar 

  • Schnapp BJ, Reese TS (1982) Cytoplasmic structure in rapid-frozen axons. J Cell Biol 94:667–679

    Article  PubMed  CAS  Google Scholar 

  • Shattuck TA, Letourneau PC (1989) Distribution and possible interactions of actin-associated proteins and cell adhesion molecules of nerve growth cones. Development 105:505–519

    PubMed  Google Scholar 

  • Song A-h, Wang D, Chen G, Li Y, Luo J, Duan S, Poo M-m (2009) A selective filter for cytoplasmic transport at the axon initial segment. Cell 136 1148–1160. doi:10.1016/j. cell. 2009.01.016

    Article  PubMed  CAS  Google Scholar 

  • Sotelo-Silveira JR, Calliari A, Cardenas M, Koenig E, Sotelo JR (2004) Myosin Va and kinesin II motor proteins are concentrated in ribosomal domains (periaxoplasmic ribosomal plaques) of myelinated axons. J Neurobiol 60:187–196

    Article  PubMed  CAS  Google Scholar 

  • Sotelo-Silveira JR, Calliari A, Kun A, Koenig E, Sotelo JR (2006) RNA trafficking in axons. Traffic 7:508–515

    Article  PubMed  CAS  Google Scholar 

  • Sotelo-Silveira J, Crispino M, Puppo A, Sotelo JR, Koenig E (2008) Myelinated axons contain β-actin mRNA and ZBP-1 in periaxoplasmic ribosomal plaques and depend on cyclic AMP and F-actin integrity for in vitro translation. J Neurochem 104:545–557

    PubMed  CAS  Google Scholar 

  • Spira ME, Oren R, Dormann A, Ilouz N, Lev S (2001) Calcium, protease activation, and cytoskeleton remodeling underlie growth cone formation and neuronal regeneration. Cell Mol Neurobiol 21:591–604

    Article  PubMed  CAS  Google Scholar 

  • Strasser GA, Rahim NA, VanderWaal KE, Gertler FB, Lanier LM (2004) Arp2/3 is a negative regulator of growth cone translocation. Neuron 43:81–94

    Article  PubMed  CAS  Google Scholar 

  • Susuki K, Rasband MN (2008) Spectrin and ankyrin-based cytoskeletons at polarized domains in myelinated axons. Exp Biol Med 233:394–400

    Article  CAS  Google Scholar 

  • Suter DM, Forscher P (2000) Substrate-cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. J Neurobiol 44:97–113

    Article  PubMed  CAS  Google Scholar 

  • Thaxton C, Bhat MA (2009) Myelination and regional domain differentiation of the axon. Results Probl Cell Differ. doi: 10.1007/400_2009_3

    Google Scholar 

  • Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring. Nature 385:313–318

    Article  PubMed  CAS  Google Scholar 

  • Verma P, Chierzi S, Codd AM, Campbell DS, Meyer RL, Holt CE, Fawcett JW (2005) Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. J Neurosci 25:331–342

    Article  PubMed  CAS  Google Scholar 

  • Wang W, van Nierkerk E, Willis DE, Twiss JL (2007) RNA transport and localized protein synthesis in neurological disorders and neural repair. Dev Neurobiol 67:1166–1182

    Article  PubMed  CAS  Google Scholar 

  • Wen Z, Han L, Bamburg JR, Shim S, Ming GL, Zheng JQ (2007) BMP gradients steer nerve growth cones by a balancing act of LIM kinase and slingshot phosphatase on ADF/cofilin. J Cell Biol 178:107–119

    Article  PubMed  CAS  Google Scholar 

  • Willis DE, van Niekerk EA, Sasaki Y, Mesngon M, Merianda TT, Williams GG, Kendall M, Smith DS, Bassell GJ, Twiss JL (2007) Extracellular stimuli specifically regulate localized levels of individual neuronal mRNAs. J Cell Biol 178:965–980

    Article  PubMed  CAS  Google Scholar 

  • Witte H, Bradke F (2008) The role of the cytoskeleton during neuronal polarization. Curr Opin Neurobiol 18:479–487

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Shrager P (2005) Dependence of axon initial segment formation on Na+ channel expression. J Neurosi Res 79:428–441

    Article  CAS  Google Scholar 

  • Yoon BC, Zivraj KH, Holt CE (2009) Local translation and mRNA trafficking in axon pathfinding. Results Probl Cell Differ. doi: 10.1007/400_2009_5

    Google Scholar 

  • Zheng JQ, Wan JJ, Poo M-m (1996) Essential role of filopodia in chemotropic turning of nerve growth cones induced by a glutamate gradient. J Neurosci 16:1140–1149

    PubMed  CAS  Google Scholar 

  • Zhou FQ, Cohan CS (2000) How actin filaments and microtubules steer growth cones to their targets. J Neurobiol 58:84–91

    Article  Google Scholar 

Download references

Acknowledgments

The preparation of this chapter and the author’s research have been generously supported by the NIH (HD019950), NSF, and the Minnesota Medical Foundation. Dr. Gianluca Gallo provided valuable comments on the text, and Dr. Lorene Lanier generously provided images for Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C. Letourneau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Letourneau, P.C. (2009). Actin in Axons: Stable Scaffolds and Dynamic Filaments. In: Koenig, E. (eds) Cell Biology of the Axon. Results and Problems in Cell Differentiation, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2009_15

Download citation

Publish with us

Policies and ethics