Skip to main content
Book cover

pp 1–24Cite as

T-Cells in Multiple Sclerosis

  • Chapter
  • First Online:

Abstract

Multiple sclerosis (MS) is a multifocal demyelinating disease of the central nervous system pathologically characterized by lesions of infiltrating macrophages and T cells. Multiple lines of evidence implicate that T cells play a central role in both mediating and regulating MS pathophysiology, and efforts to develop rational therapeutic strategies for MS have focused on understanding factors which control T cell function. T cells are a highly heterogeneous population comprised of multiple cell subtypes which mediate both adaptive immunity and specific tolerance. Much has been learned about the molecular signals that induce T cell activation and differentiation, and several effective treatments for MS act by altering these activation and differentiation pathways. In recent years, increasing recognition has been given to T cell subsets which serve immunosuppressive or regulatory functions, and it has been discovered that patients with MS have a functional defect in these cells. Current work is beginning to shed light on interactions of pathogenic and regulatory T cells with the intrinsic cells of the CNS to provide a more comprehensive picture of MS pathogenesis.

This is a preview of subscription content, log in via an institution.

References

  • Abbas AK, Murphy KM, et al (1996) Functional diversity of helper T lymphocytes. Nature 383(6603):787–793

    PubMed  ADS  CAS  Google Scholar 

  • Aggarwal S, Ghilardi N, et al (2003) Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 278(3):1910–1914

    PubMed  CAS  Google Scholar 

  • Anderson AC, Anderson DE, et al (2007) Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science 318(5853):1141–1143

    PubMed  ADS  CAS  Google Scholar 

  • Anderson DE, Sharpe AH, et al (1999) The B7-CD28/CTLA-4 costimulatory pathways in autoimmune disease of the central nervous system. Curr Opin Immunol 11(6):677–683

    PubMed  CAS  Google Scholar 

  • Annunziato F, Cosmi L, et al (2007) Phenotypic and functional features of human Th17 cells. J Exp Med 204(8):1849–1861

    PubMed  CAS  PubMed Central  Google Scholar 

  • Anthony DC, Miller KM, et al (1998) Matrix metalloproteinase expression in an experimentally-induced DTH model of multiple sclerosis in the rat CNS. J Neuroimmunol 87(1–2):62–72

    PubMed  CAS  Google Scholar 

  • Astier A, Meiffren G, et al (2006) Alterations in CD46-mediated Tr1 regulatory T cells in patients with multiple sclerosis. J Clin Invest 116(12):3252–3257

    PubMed  CAS  PubMed Central  Google Scholar 

  • Awasthi A, Carrier Y, et al (2007) A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat Immunol 8(12):1380–1389

    PubMed  CAS  Google Scholar 

  • Babbe H, Roers A, et al (2000) Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 192(3):393–404

    PubMed  CAS  PubMed Central  Google Scholar 

  • Babinski J (1885) Recherches sur l’anatomie pathologique de la sclérose en plaques et etude comparative des diverses varietes de la scléroses de la moelle. Arch Physiol 2–6:186–207

    Google Scholar 

  • Baecher-Allan C, Brown JA, et al (2001) CD4+CD25high regulatory cells in human peripheral blood. J Immunol 167(3):1245–1253

    PubMed  CAS  Google Scholar 

  • Baecher-Allan C, Viglietta V, et al (2002) Inhibition of human CD4(+)CD25(+high) regulatory T cell function. J Immunol 169(11):6210–6217

    PubMed  CAS  Google Scholar 

  • Balashov KE, Smith DR, et al (1997) Increased interleukin 12 production in progressive multiple sclerosis: induction by activated CD4+ T cells via CD40 ligand. Proc Natl Acad Sci U S A 94(2):599–603

    PubMed  ADS  CAS  PubMed Central  Google Scholar 

  • Barrat FJ, Cua DJ, et al (2002) In vitro generation of interleukin 10-producing regulatory CD4(+) T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J Exp Med 195(5):603–616

    PubMed  CAS  PubMed Central  Google Scholar 

  • Batten M, Li J, et al (2006) Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat Immunol 7(9):929–936

    PubMed  CAS  Google Scholar 

  • Becher B, Durell BG, et al (2002) Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J Clin Invest 110(4):493–497

    PubMed  CAS  PubMed Central  Google Scholar 

  • Beriou G, Costantino CM, et al (2009) IL-17 producing human peripheral regulatory T cells retain suppressive function. Blood 113(18):4240–4249

    PubMed  PubMed Central  Google Scholar 

  • Bettelli E, Carrier Y, et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441(7090):235–238

    PubMed  ADS  CAS  Google Scholar 

  • Bettelli E, Korn T, et al (2008) Induction and effector functions of T(H)17 cells. Nature 453(7198):1051–1057

    PubMed  ADS  CAS  Google Scholar 

  • Bo L, Peterson JW, et al (1996) Distribution of immunoglobulin superfamily members ICAM-1, -2, -3, and the beta 2 integrin LFA-1 in multiple sclerosis lesions. J Neuropathol Exp Neurol 55(10):1060–1072

    PubMed  CAS  Google Scholar 

  • Carboni S, Aboul-Enein F, et al (2003) CD134 plays a crucial role in the pathogenesis of EAE and is upregulated in the CNS of patients with multiple sclerosis. J Neuroimmunol 145(1–2):1–11

    PubMed  CAS  Google Scholar 

  • Charcot J (1868) Histologic de la sclérose en plaque. Gaz Hôp 41:554–556

    Google Scholar 

  • International Multiple Sclerosis Genetics Consortium, Hafler DA, et al (2007) Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 357(9):851–862

    PubMed  CAS  Google Scholar 

  • Cua D, Sherlock J, et al (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421(6924):744–748

    PubMed  ADS  CAS  Google Scholar 

  • Cuzner ML, Gveric D, et al (1996) The expression of tissue-type plasminogen activator, matrix metalloproteases and endogenous inhibitors in the central nervous system in multiple sclerosis: comparison of stages in lesion evolution. J Neuropathol Exp Neurol 55(12):1194–1204

    PubMed  CAS  Google Scholar 

  • Dardalhon V, Korn T, et al (2008) Role of Th1 and Th17 cells in organ-specific autoimmunity. J Autoimmun 31(3):252–256

    PubMed  CAS  PubMed Central  Google Scholar 

  • De Jager PL, Hafler DA (2007) New therapeutic approaches for multiple sclerosis. Annu Rev Med 58:417–432

    PubMed  Google Scholar 

  • De Jager PL, Jia X, et al (2009a) Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat Genet 14:14

    Google Scholar 

  • De Jager PL, Baecher-Allan C, et al (2009b) The role of the CD58 locus in multiple sclerosis. Proc Natl Acad Sci USA 106(13):5264–5269

    Google Scholar 

  • Dieckmann D, Bruett CH, et al (2002) Human CD4(+)CD25(+) regulatory contact-dependent T cells induce interleukin 10-producing, contact-independent type 1-like regulatory T cells [corrected]. J Exp Med 196(2):247–253

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dieckmann D, Plottner H, et al (2001) Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J Exp Med 193(11):1303–1310

    PubMed  CAS  PubMed Central  Google Scholar 

  • Duda PW, Schmied MC, et al (2000) Glatiramer acetate (Copaxone) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis. J Clin Invest 105(7):967–976

    PubMed  CAS  PubMed Central  Google Scholar 

  • Elovaara I, Ukkonen M, et al (2000) Adhesion molecules in multiple sclerosis: relation to subtypes of disease and methylprednisolone therapy. Arch Neurol 57(4):546–551

    PubMed  CAS  Google Scholar 

  • Elyaman W, Kivisäkk P, et al (2008) Distinct functions of autoreactive memory and effector CD4+ T cells in experimental autoimmune encephalomyelitis. Am J Pathol 173(2):411–422

    PubMed  PubMed Central  Google Scholar 

  • Engelhardt B, Ransohoff R (2005) The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and moleclar mechanisms. Trends Immunol 26(9):485–495

    PubMed  CAS  Google Scholar 

  • Fontenot JD, Rasmussen JP, et al (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22(3):329–341

    PubMed  CAS  Google Scholar 

  • Genovese MC, Becker JC, et al (2005) Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med 353(11):1114–1123

    PubMed  CAS  Google Scholar 

  • Giovannoni G, Cutter GR, et al (2006) Infectious causes of multiple sclerosis. Lancet Neurol 5(10):887–894

    PubMed  Google Scholar 

  • Graber JJ, Allie SR, et al (2008) Interleukin-17 in transverse myelitis and multiple sclerosis. J Neuroimmunol 196(1–2):124–132

    PubMed  CAS  Google Scholar 

  • Groux H, Bigler M, et al (1998) Inhibitory and stimulatory effects of IL-10 on human CD8+ T cells. J Immunol 160(7):3188–3193

    PubMed  CAS  Google Scholar 

  • Groux H, O’Garra A, et al (1997) A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389(6652):737–742

    PubMed  ADS  CAS  Google Scholar 

  • Hafler DA (2004) Multiple sclerosis. J Clin Invest 113(6):788–794

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hafler DA, Fox DA, et al (1985) In vivo activated T lymphocytes in the peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. N Engl J Med 312(22):1405–1411

    PubMed  CAS  Google Scholar 

  • Hafler JP, Maier LM, et al (2009) CD226 Gly307Ser association with multiple autoimmune diseases. Genes Immun 10(1):5–10

    PubMed  CAS  PubMed Central  Google Scholar 

  • Harding FA, McArthur JG, et al (1992) CD28-mediated signalling co-stimulates murine T-cells and prevents induction of anergy in T-cell clones. Nature 356(6370):607–609

    PubMed  ADS  CAS  Google Scholar 

  • Harrington L, Hatton R, et al (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6(11):1123–1132

    PubMed  CAS  Google Scholar 

  • Hauser SL, Bhan AK, et al (1986) Immunohistochemical analysis of the cellular infiltrate in multiple sclerosis lesions. Ann Neurol 19(6):578–587

    PubMed  CAS  Google Scholar 

  • Huan J, Culbertson N, et al (2005) Decreased FOXP3 levels in multiple sclerosis patients. J Neurosci Res 81(1):45–52

    PubMed  CAS  Google Scholar 

  • Ichiyama K, Yoshida H, et al (2008) Foxp3 inhibits RORgammat-mediated IL-17A mRNA transcription through direct interaction with RORgammat. J Biol Chem 283(25):17003–17008

    PubMed  CAS  Google Scholar 

  • Ishizu T, Osoegawa M, et al (2005) Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis. Brain 128(Pt 5):988–1002

    PubMed  Google Scholar 

  • Ivanov I, McKenzie BS, et al (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126(6):1121–1133

    PubMed  CAS  Google Scholar 

  • Jenkins MK, Taylor PS, et al (1991) CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J Immunol 147(8):2461–2466

    PubMed  CAS  Google Scholar 

  • Johnson KP, Brooks BR, et al (2001) Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind, placebo-controlled trial. 1995. Neurology 57(12 Suppl 5):S16–S24

    PubMed  CAS  Google Scholar 

  • Jonuleit H, Schmitt E, et al (2002) Infectious tolerance: human CD25(+) regulatory T cells convey suppressor activity to conventional CD4(+) T helper cells. J Exp Med 196(2):255–260

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kabat EA, Glusman M, et al (1948) Quantitative estimation of the albumin and gamma globulin in normal and pathologic cerebrospinal fluid by immunochemical methods. Am J Med 4(5):653–662

    PubMed  CAS  Google Scholar 

  • Karandikar NJ, Vanderlugt CL, et al (1996) CTLA-4: a negative regulator of autoimmune disease. J Exp Med 184(2):783–788

    PubMed  CAS  Google Scholar 

  • Kebir H, Kreymborg K, et al (2007) Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 13(10):1173–1175

    PubMed  CAS  Google Scholar 

  • Keir ME, Sharpe AH (2005) The B7/CD28 costimulatory family in autoimmunity. Immunol Rev 204:128–143

    PubMed  CAS  Google Scholar 

  • Kemper C, Chan AC, et al (2003) Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature 421(6921):388–392

    PubMed  ADS  CAS  Google Scholar 

  • Kieseier BC, Seifert T, et al (1999) Matrix metalloproteinases in inflammatory demyelination: targets for treatment. Neurology 53(1):20–25

    PubMed  CAS  Google Scholar 

  • Koguchi K, Anderson D, et al (2006) Dysregulated T cell expression of TIM3 in multiple sclerosis. J Exp Med 203(6):1413–1418

    PubMed  CAS  PubMed Central  Google Scholar 

  • Korn T, Bettelli E, et al (2007) IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448(7152):484–487

    PubMed  ADS  CAS  PubMed Central  Google Scholar 

  • Korn T, Reddy J, et al (2007) Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat Med 13(4):423–431

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kostianovsky AM, Maier LM, et al (2008) Astrocytic regulation of human monocytic/microglial activation. J Immunol 181(8):5425–5432

    PubMed  CAS  Google Scholar 

  • Kroenke MA, Carlson TJ, et al (2008) IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J Exp Med 205(7):1535–1541

    PubMed  CAS  PubMed Central  Google Scholar 

  • Krummel MF, Allison JP (1996) CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 183(6):2533–2540

    PubMed  CAS  Google Scholar 

  • Kuhn R, Lohler J, et al (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75(2):263–274

    PubMed  CAS  Google Scholar 

  • Kulkarni AB, Huh CG, et al (1993) Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci U S A 90(2):770–774

    PubMed  ADS  CAS  PubMed Central  Google Scholar 

  • Lafferty KJ, Woolnough J (1977) The origin and mechanism of the allograft reaction. Immunol Rev 35:231–262

    PubMed  CAS  Google Scholar 

  • Langrish CL, Chen Y, et al (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201(2):233–240

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lassmann H, Raine CS, et al (1998) Immunopathology of multiple sclerosis: report on an international meeting held at the Institute of Neurology of the University of Vienna. J Neuroimmunol 86(2):213–217

    PubMed  CAS  Google Scholar 

  • Lee YK, Turner H, et al (2009) Late developmental plasticity in the T helper 17 lineage. Immunity 30(1):92–107

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lehnardt S, Massillon L, et al (2003) Activation of innate immunity in the CNS triggers neurodegeneration trough a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci U S A 100(14):8514–8519

    PubMed  ADS  CAS  PubMed Central  Google Scholar 

  • Leppert D, Waubant E, et al (1995) T cell gelatinases mediate basement membrane transmigration in vitro. J Immunol 154(9):4379–4389

    PubMed  CAS  Google Scholar 

  • Levings MK, Sangregorio R, et al (2001) IFN-alpha and IL-10 induce the differentiation of human type 1 T regulatory cells. J Immunol 166(9):5530–5539

    PubMed  CAS  Google Scholar 

  • Liang SC, Tan XY, et al (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203(10):2271–2279

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liu W, Putnam AL, et al (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203(7):1701–1711

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lock C, Hermans G, et al (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8(5):500–508

    PubMed  CAS  Google Scholar 

  • Maeda A, Sobel RA (1996) Matrix metalloproteinases in the normal human central nervous system, microglial nodules, and multiple sclerosis lesions. J Neuropathol Exp Neurol 55(3):300–309

    PubMed  CAS  Google Scholar 

  • Manel N, Unutmaz D, et al (2008) The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol 9(6):641–649

    PubMed  CAS  PubMed Central  Google Scholar 

  • Markovic-Plese S, Cortese I, et al (2001) CD4+CD28- costimulation-independent T cells in multiple sclerosis. J Clin Invest 108(8):1185–1194

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mathur AN, Chang HC, et al (2006) T-bet is a critical determinant in the instability of the IL-17-secreting T-helper phenotype. Blood 108(5):1595–1601

    PubMed  CAS  PubMed Central  Google Scholar 

  • Matusevicius D, Kivisäkk P, et al (1999) Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler 5(2):101–104

    PubMed  CAS  Google Scholar 

  • McGeachy MJ, Cua DJ (2007) The link between IL-23 and Th17 cell-mediated immune pathologies. Semin Immunol 19(6):372–376

    PubMed  CAS  Google Scholar 

  • Meylan F, Davidson TS, et al (2008) The TNF-family receptor DR3 is essential for diverse T-cell-mediated inflammatory diseases. Immunity 29(1):79–89

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miller SD, Vanderlugt CL, et al (1995) Blockade of CD28/B7–1 interaction prevents epitope spreading and clinical relapses of murine EAE. Immunity 3(6):739–745

    PubMed  CAS  Google Scholar 

  • Monje ML, Toda H, et al (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302(5651):1760–1765

    PubMed  ADS  CAS  Google Scholar 

  • Monney L, Sabatos CA, et al (2002) Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415(6871):536–541

    PubMed  CAS  Google Scholar 

  • Montes M, Zhang X, et al (2008) Oligoclonal myelin-reactive T-cell infiltrates derived from multiple sclerosis lesions are enriched in Th17 cells. Clin Immunol

    PubMed  Google Scholar 

  • Moore KW, de Waal Malefyt R, et al (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765

    PubMed  CAS  Google Scholar 

  • Mosmann TR, Coffman RL (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7:145–173

    PubMed  CAS  Google Scholar 

  • Munger KL, Zhang SM, et al (2004) Vitamin D intake and incidence of multiple sclerosis. Neurology 62(1):60–65

    PubMed  CAS  Google Scholar 

  • Nakae S, Iwakura Y, et al (2007) Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17. J Leukoc Biol 81(5):1258–1268

    PubMed  CAS  Google Scholar 

  • Navikas V, Link J, et al (1995) Increased mRNA expression of IL-10 in mononuclear cells in multiple sclerosis and optic neuritis. Scand J Immunol 41(2):171–178

    PubMed  CAS  Google Scholar 

  • Neuhaus O, Farina C, et al (2001) Mechanisms of action of glatiramer acetate in multiple sclerosis. Neurology 56(6):702–708

    PubMed  CAS  Google Scholar 

  • Nurieva R, Yang X, et al (2007) Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448(7152):480–483

    PubMed  ADS  CAS  Google Scholar 

  • Oliveira EM, Bar-Or A, et al (2003) CTLA-4 dysregulation in the activation of myelin basic protein reactive T cells may distinguish patients with multiple sclerosis from healthy controls. J Autoimmun 20(1):71–81

    PubMed  CAS  Google Scholar 

  • Ota K, Matsui M, et al (1990) T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 346(6280):183–187

    PubMed  ADS  CAS  Google Scholar 

  • Panitch HS, Hirsch RL, et al (1987) Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet 1(8538):893–895

    PubMed  CAS  Google Scholar 

  • Park H, Li Z, et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6(11):1133–1141

    PubMed  CAS  PubMed Central  Google Scholar 

  • Petereit HF, Pukrop R, et al (2003) Low interleukin-10 production is associated with higher disability and MRI lesion load in secondary progressive multiple sclerosis. J Neurol Sci 206(2):209–214

    PubMed  CAS  Google Scholar 

  • Pette M, Fujita K, et al (1990) Myelin basic protein-specific T lymphocyte lines from MS patients and healthy individuals. Neurology 40(11):1770–1776

    PubMed  CAS  Google Scholar 

  • Prineas J (1975) Pathology of the early lesion in multiple sclerosis. Hum Pathol 6(5):531–554

    PubMed  CAS  Google Scholar 

  • Prineas JW, Wright RG (1978) Macrophages, lymphocytes, and plasma cells in the perivascular compartment in chronic multiple sclerosis. Lab Invest 38(4):409–421

    PubMed  CAS  Google Scholar 

  • Raine CS (1994) The Dale E. McFarlin Memorial Lecture: the immunology of the multiple sclerosis lesion. Ann Neurol 36(Suppl):S61–S72

    PubMed  CAS  Google Scholar 

  • Read S, Malmstrom V, et al (2000) Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 192(2):295–302

    PubMed  CAS  PubMed Central  Google Scholar 

  • Reijonen H, Novak EJ, et al (2002) Detection of GAD65-specific T-cells by major histocompatibility complex class II tetramers in type 1 diabetic patients and at-risk subjects. Diabetes 51(5):1375–1382

    PubMed  CAS  Google Scholar 

  • Rivers TM, Schwentker FF (1935) Encephalomyelitis accompanied by myelin destruction experimentally produced in monkeys. J Exp Med 61:689–702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakaguchi S, Fukuma K, et al (1985) Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J Exp Med 161(1):72–87

    PubMed  CAS  Google Scholar 

  • Sakaguchi S, Yamaguchi T, et al (2008) Regulatory T cells and immune tolerance. Cell 133(5):775–787

    PubMed  CAS  Google Scholar 

  • Salama AD, Chitnis T, et al (2003) Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J Exp Med 198(1):71–78

    PubMed  CAS  PubMed Central  Google Scholar 

  • Scholz C, Patton KT, et al (1998) Expansion of autoreactive T cells in multiple sclerosis is independent of exogenous B7 costimulation. J Immunol 160(3):1532–1538

    PubMed  CAS  Google Scholar 

  • Seddiki N, Santner-Nanan B, et al (2006) Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med 203(7):1693–1700

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shevach EM, McHugh RS, et al (2001) Control of T-cell activation by CD4+ CD25+ suppressor T cells. Immunol Rev 182:58–67

    PubMed  CAS  Google Scholar 

  • Shull MM, Ormsby I, et al (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359(6397):693–699

    PubMed  ADS  CAS  PubMed Central  Google Scholar 

  • Sobel RA, Mitchell ME, et al (1990) Intercellular adhesion molecule-1 (ICAM-1) in cellular immune reactions in the human central nervous system. Am J Pathol 136(6):1309–1316

    PubMed  CAS  PubMed Central  Google Scholar 

  • Soldan SS, Alvarez Retuerto AI, et al (2004) Dysregulation of IL-10 and IL-12p40 in secondary progressive multiple sclerosis. J Neuroimmunol 146(1–2):209–215

    PubMed  CAS  Google Scholar 

  • Sørensen TL, Tani M, et al (1999) Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 103(6):807–815

    PubMed  PubMed Central  Google Scholar 

  • Sporici RA, Beswick RL, et al (2001) ICOS ligand costimulation is required for T-cell encephalitogenicity. Clin Immunol 100(3):277–288

    PubMed  CAS  Google Scholar 

  • Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76(2):301–314

    PubMed  CAS  MathSciNet  Google Scholar 

  • Stromnes I, Cerretti L, et al (2008) Differential regulation of central nervous system autoimmunity by T(H)1 and T(H)17 cells. Nat Med 14(3):337–342

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stumhofer J, Laurence A, et al (2006) Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol 7(9):937–945

    PubMed  CAS  Google Scholar 

  • Trajkovic V, Vuckovic O, et al (2004) Astrocyte-induced regulatory T cells mitigate CNS autoimmunity. Glia 47(2):168–179

    PubMed  Google Scholar 

  • Traugott U, Reinherz EL, et al (1983) Multiple sclerosis: distribution of T cell subsets within active chronic lesions. Science 219(4582):308–310

    PubMed  ADS  CAS  Google Scholar 

  • Tzartos JS, Friese MA, et al (2008) Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 172(1):146–155

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vaknin-Dembinsky A, Balashov K, et al (2006) IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production. J Immunol 176(12):7768–7774

    PubMed  CAS  Google Scholar 

  • van Boxel-Dezaire AH, Hoff SC, et al (1999) Decreased interleukin-10 and increased interleukin-12p40 mRNA are associated with disease activity and characterize different disease stages in multiple sclerosis. Ann Neurol 45(6):695–703

    PubMed  Google Scholar 

  • Veldhoen M, Hocking RJ, et al (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24(2):179–189

    PubMed  CAS  Google Scholar 

  • Venken K, Hellings N, et al (2006) Secondary progressive in contrast to relapsing-remitting multiple sclerosis patients show a normal CD4+CD25+ regulatory T-cell function and FOXP3 expression. J Neurosci Res 83(8):1432–1446

    PubMed  CAS  Google Scholar 

  • Vieira PL, Christensen JR, et al (2004) IL-10-secreting regulatory T cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4+CD25+ regulatory T cells. J Immunol 172(10):5986–5993

    PubMed  CAS  Google Scholar 

  • Viglietta V, Baecher-Allan C, et al (2004) Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199(7):971–979

    PubMed  CAS  PubMed Central  Google Scholar 

  • Viglietta V, Bourcier K, et al (2008) CTLA4Ig treatment in patients with multiple sclerosis: an open-label, phase 1 clinical trial. Neurology 71(12):917–924

    PubMed  CAS  Google Scholar 

  • Volpe E, Servant N, et al (2008) A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol 9(6):650–657

    PubMed  CAS  Google Scholar 

  • Walunas TL, Lenschow DJ, et al (1994) CTLA-4 can function as a negative regulator of T-cell activation. Immunity 1(5):405–413

    PubMed  CAS  Google Scholar 

  • Wang J, Ioan-Facsinay A, et al (2007) Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol 37(1):129–138

    PubMed  CAS  Google Scholar 

  • Washington R, Burton J, et al (1994) Expression of immunologically relevant endothelial cell activation antigens on isolated central nervous system microvessels from patients with multiple sclerosis. Ann Neurol 35(1):89–97

    PubMed  CAS  Google Scholar 

  • Windhagen A, Newcombe J, et al (1995) Expression of costimulatory molecules B7–1 (CD80), B7–2 (CD86), and interleukin 12 cytokine in multiple sclerosis lesions. J Exp Med 182(6):1985–1996

    PubMed  CAS  Google Scholar 

  • Wucherpfennig KW, Newcombe J, et al (1992a) Gamma delta T-cell receptor repertoire in acute multiple sclerosis lesions. Proc Natl Acad Sci U S A 89(10):4588–4592

    PubMed  ADS  CAS  PubMed Central  Google Scholar 

  • Wucherpfennig KW, Newcombe J, et al (1992b). T cell receptor V alpha-V beta repertoire and cytokine gene expression in active multiple sclerosis lesions. J Exp Med 175(4):993–1002

    PubMed  CAS  Google Scholar 

  • Xu L, Kitani A, et al (2007) Cutting edge: regulatory T cells induce CD4+CD25-Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol 178(11):6725–6729

    PubMed  CAS  Google Scholar 

  • Yang L, Anderson D, et al (2008) IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 454(7202):350–352

    PubMed  ADS  CAS  PubMed Central  Google Scholar 

  • Yao Z, Painter SL, et al (1995) Human IL-17: a novel cytokine derived from T cells. J Immunol 155(12):5483–5486

    PubMed  CAS  Google Scholar 

  • Yeo TW, De Jager PL, et al (2007) A second major histocompatibility complex susceptibility locus for multiple sclerosis. Ann Neurol 61(3):228–236

    PubMed  PubMed Central  Google Scholar 

  • Yong VW, Krekoski CA, et al (1998) Matrix metalloproteinases and diseases of the CNS. Trends Neurosci 21(2):75–80

    PubMed  CAS  Google Scholar 

  • Yoshida H, Imaizumi T, et al (2001) Interleukin-1beta stimulates galectin-9 expression in human astrocytes. Neuroreport 12(17):3755–3758

    PubMed  CAS  Google Scholar 

  • Zamvil S, Nelson P, et al (1985) T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. Nature 317(6035):355–358

    PubMed  ADS  CAS  Google Scholar 

  • Zhang GX, Baker CM, et al (2000) Chemokines and chemokine receptors in the pathogenesis of multiple sclerosis. Mult Scler 6(1):3–13

    PubMed  CAS  MathSciNet  Google Scholar 

  • Zhang J, Markovic-Plese S, et al (1994) Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med 179(3):973–984

    PubMed  CAS  Google Scholar 

  • Zhou L, Lopes J, et al (2008) TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453(7192):236–240

    PubMed  ADS  CAS  PubMed Central  Google Scholar 

  • Zhu C, Anderson AC, et al (2005) The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6(12):1245–1252

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Hafler .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Heidelberg

About this chapter

Cite this chapter

Severson, C., Hafler, D.A. (2009). T-Cells in Multiple Sclerosis. In: Results and Problems in Cell Differentiation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2009_12

Download citation

  • DOI: https://doi.org/10.1007/400_2009_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics