Skip to main content

Hydrogenases and H+-Reduction in Primary Energy Conservation

  • Chapter
  • First Online:

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 45))

Abstract

Hydrogenases are metalloenzymes subdivided into two classes that contain iron-sulfur clusters and catalyze the reversible oxidation of hydrogen gas (H2 ⇆ 2H+ + 2e). Two metal atoms are present at their active center: either a Ni and an Fe atom in the [NiFe]hydrogenases, or two Fe atoms in the [FeFe]hydrogenases. They are phylogenetically distinct classes of proteins. The catalytic core of [NiFe]hydrogenases is a heterodimeric protein associated with additional subunits in many of these enzymes. The catalytic core of [FeFe]hydrogenases is a domain of about 350 residues that accommodates the active site (H cluster). Many [FeFe]hydrogenases are monomeric but possess additional domains that contain redox centers, mostly Fe–S clusters. A third class of hydrogenase, characterized by a specific iron-containing cofactor and by the absence of Fe–S cluster, is found in some methanogenic archaea; this Hmd hydrogenase has catalytic properties different from those of [NiFe]- and [FeFe]hydrogenases.

The [NiFe]hydrogenases can be subdivided into four subgroups: (1) the H2 uptake [NiFe]hydrogenases (group 1); (2) the cyanobacterial uptake hydrogenases and the cytoplasmic H2 sensors (group 2); (3) the bidirectional cytoplasmic hydrogenases able to bind soluble cofactors (group 3); and (4) the membrane-associated, energy-converting, H2 evolving hydrogenases (group 4). Unlike the [NiFe]hydrogenases, the [FeFe]hydrogenases form a homogeneous group and are primarily involved in H2 evolution.

This review recapitulates the classification of hydrogenases based on phylogenetic analysis and the correlation with hydrogenase function of the different phylogenetic groupings, discusses the possible role of the [FeFe]hydrogenases in the genesis of the eukaryotic cell, and emphasizes the structural and functional relationships of hydrogenase subunits with those of complex I of the respiratory electron transport chain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams MWW (1990) The structure and mechanism of iron-hydrogenases. Biochim Biophys Acta 1020:115

    Article  PubMed  CAS  Google Scholar 

  • Adams MWW, Stiefel EI (2000) Organometallic iron: the key to biological hydrogen metabolism. Curr Opin Chem Biol 4:214

    Article  PubMed  CAS  Google Scholar 

  • Albracht SPJ, Hedderich R (2000) Learning from hydrogenases: location of a proton pump and of a second FMN in bovine NADH–ubiquinone oxidoreductase (complex I). FEBS Lett 485:1

    Article  PubMed  CAS  Google Scholar 

  • Andrews SC, Berks BC, McClay J, Ambler A, Quail MA, Golby P, Guest JR (1997) A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. Microbiology 143(11):3633–3647

    Article  PubMed  CAS  Google Scholar 

  • Appel J, Schulz R (1998) Hydrogen metabolism in organisms with oxygenic photosynthesis: hydrogenases as important regulatory devices for a proper redox poising? J Photochem Photobiol B–Biol 47:1

    Article  CAS  Google Scholar 

  • Appel J, Phunpruch S, Steinmuller K, Schulz R (2000) The bidirectional hydrogenase of Synechocystis sp. PCC 6803 works as an electron valve during photosynthesis. Arch Microbiol 173:333

    Article  PubMed  CAS  Google Scholar 

  • Atta M, Meyer J (2000) Characterization of the gene encoding the [Fe]-hydrogenase from Megasphaera elsdenii. Biochim Biophys Acta 1476:368

    Article  PubMed  CAS  Google Scholar 

  • Barquera B, Nilges MJ, Morgan JE, Ramirez-Silva L, Zhou W, Gennis RB (2004) Mutagenesis study of the 2Fe–2S center and the FAD binding site of the Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio cholerae. Biochemistry 43:12322

    Article  PubMed  CAS  Google Scholar 

  • Bäumer S, Ide T, Jacobi C, Johann A, Gottschalk G, Deppenmeier U (2000) The F420H2 dehydrogenase from Methanosarcina mazei is a redox-driven proton pump closely related to NADH dehydrogenases. J Biol Chem 275:17968

    Article  PubMed  Google Scholar 

  • Berks BC, Palmer T, Sargent F (2003) The Tat protein translocation pathway and its role in microbial physiology. Adv Microb Physiol 47:187

    Article  PubMed  CAS  Google Scholar 

  • Berks BC, Palmer T, Sargent F (2005) Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. Curr Opin Microbiol 8:174

    Article  PubMed  CAS  Google Scholar 

  • Bernhard M, Benelli B, Hochkoeppler A, Zannoni D, Friedrich B (1997) Functional and structural role of the cytochrome b subunit of the membrane-bound hydrogenase complex of Alcaligenes eutrophus H16. Eur J Biochem 248:179

    Article  PubMed  CAS  Google Scholar 

  • Bernhard M, Friedrich B, Siddiqui RA (2000) Ralstonia eutropha TF93 is blocked in tat-mediated protein export. J Bacteriol 182:581

    Article  PubMed  CAS  Google Scholar 

  • Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453

    Article  PubMed  CAS  Google Scholar 

  • Böhm R, Sauter M, Böck A (1990) Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenlyase components. Mol Microbiol 4:231

    Article  PubMed  Google Scholar 

  • Bose SK, Gest H (1963) Bacterial photophosphorylation: regulation by redox balance. Proc Natl Acad Sci USA 49:337

    Article  PubMed  CAS  Google Scholar 

  • Brandt U (1999) Proton translocation in the respiratory chain involving ubiquinone – a hypothetical semiquinone switch mechanism for complex I. Biofactors 9:95

    Article  PubMed  CAS  Google Scholar 

  • Brandt U (2006) Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem 75:69-92

    Article  PubMed  CAS  Google Scholar 

  • Brugna-Guiral M, Tron P, Nitschke W, Stetter KO, Burlat B, Guigliarelli B, Bruschi M, Giudici-Orticoni MT (2003) [NiFe] hydrogenases from the hyperthermophilic bacterium Aquifex aeolicus: properties, function, and phylogenetics. Extremophiles 7:145

    PubMed  CAS  Google Scholar 

  • Bui ETN, Bradley PJ, Johnson PJ (1996) A common evolutionary origin for mitochondria and hydrogenosomes. Proc Natl Acad Sci USA 93:9651

    Article  PubMed  CAS  Google Scholar 

  • Calteau A, Gouy M, Perrière G (2005) Horizontal transfer of two operons coding for hydrogenases between bacteria and archaea. J Mol Evol 60:557

    Article  PubMed  CAS  Google Scholar 

  • Candela M, Zaccherini E, Zannoni D (2001) Respiratory electron transport and light-induced energy transduction in membranes from the aerobic photosynthetic bacterium Roseobacter denitrificans. Arch Microbiol 175:168

    Article  PubMed  CAS  Google Scholar 

  • Carroll J, Fearnley IM, Shannon RJ, Hirst J, Walker JE (2003) Analysis of the subunit composition of complex I from bovine heart mitochondria. Mol Cell Proteomics 2:117

    Article  PubMed  CAS  Google Scholar 

  • Cauvin B, Colbeau A, Vignais PM (1991) The hydrogenase structural operon in Rhodobacter capsulatus contains a third gene, hupM, necessary for the formation of a physiologically competent hydrogenase. Mol Microbiol 5:2519

    Article  PubMed  CAS  Google Scholar 

  • Cournac L, Mus F, Bernard L, Guedeney G, Vignais P, Peltier G (2002) Limiting steps of hydrogen production in Chlamydomonas reinhardtii and Synechocystis PCC 6803 as analysed by light-induced gas exchange transients. Int J Hydr Energ 27:1229

    Article  CAS  Google Scholar 

  • Cournac L, Guedeney G, Peltier G, Vignais PM (2004) Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex. J Bacteriol 186:1737

    Article  PubMed  CAS  Google Scholar 

  • Deppenmeier U (2002) The unique biochemistry of methanogenesis. Prog Nucleic Acid Res Mol Biol 71:223

    Article  PubMed  CAS  Google Scholar 

  • Deppenmeier U (2004) The membrane-bound electron transport system of Methanosar- cina species. J Bioenerg Biomembr 36:55

    Article  PubMed  CAS  Google Scholar 

  • Dimroth P, Cook GM (2004) Bacterial Na+- or H+-coupled ATP synthases operating at low electrochemical potential. Adv Microb Physiol 49:175

    Article  PubMed  CAS  Google Scholar 

  • Dolla A, Pohorelic BK, Voordouw JK, Voordouw G (2000) Deletion of the hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough hampers hydrogen metabolism and low-redox-potential niche establishment. Arch Microbiol 174:143

    Article  PubMed  CAS  Google Scholar 

  • Dross F, Geisler V, Lenger R, Theis F, Krafft T, Fahrenholz F, Kojro E, Duchene A, Tripier D, Juvenal K et al. (1992) The quinone-reactive Ni/Fe-hydrogenase of Wolinella succinogenes. Eur J Biochem 206:93

    Article  PubMed  CAS  Google Scholar 

  • Dubini APRL, Jack RL, Palmer T, Sargent F (2002) How bacteria get energy from hydrogen: a genetic analysis of periplasmic hydrogen oxidation in Escherichia coli. Int J Hydr Energ 27:1413

    Article  CAS  Google Scholar 

  • Dupuis A, Chevallet M, Darrouzet E, Duborjal H, Lunardi J, Issartel JP (1998) The complex I from Rhodobacter capsulatus. Biochim Biophys Acta 1364:147

    Article  PubMed  CAS  Google Scholar 

  • Dupuis A, Prieur I, Lunardi J (2001) Toward a characterization of the connecting module of complex I. J Bioenerg Biomembr 33:159

    Article  PubMed  CAS  Google Scholar 

  • Dutton PL, Moser CC, Sled VD, Daldal F, Ohnishi T (1998) A reductant-induced oxidation mechanism for complex I. Biochim Biophys Acta 1364:245

    Article  PubMed  CAS  Google Scholar 

  • Embley TM, van der Giezen M, Horner DS, Dyal PL, Bell S, Foster PG (2003) Hydrogenosomes, mitochondria and early eukaryotic evolution. IUBMB Life 55:387

    Article  PubMed  CAS  Google Scholar 

  • Fauque G, Peck HD Jr, Moura JJ, Huynh BH, Berlier Y, DerVartanian DV, Teixeira M, Przybyla AE, Lespinat PA, Moura I et al. (1988) The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio. FEMS Microbiol Rev 4:299

    PubMed  CAS  Google Scholar 

  • Fearnley IM, Walker JE (1992) Conservation of sequences of subunits of mitochondrial complex I and their relationships with other proteins. Biochim Biophys Acta 1140:105

    Article  PubMed  CAS  Google Scholar 

  • Flemming D, Stolpe S, Schneider D, Hellwig P, Friedrich T (2005) A possible role for iron-sulfur cluster N2 in proton translocation by the NADH:ubiquinone oxidoreductase (complex I). J Mol Microbiol Biotechnol 10:208

    Article  PubMed  CAS  Google Scholar 

  • Fontecilla-Camps JC, Frey M, Garcin E, Hatchikian C, Montet Y, Piras C, Vernede X, Volbeda A (1997) Hydrogenase: a hydrogen-metabolizing enzyme. What do the crystal structures tell us about its mode of action? Biochimie 79:661

    Article  PubMed  CAS  Google Scholar 

  • Fox JD, Kerby RL, Roberts GP, Ludden PW (1996a) Characterization of the CO-induced, CO-tolerant hydrogenase from Rhodospirillum rubrum and the gene encoding the large subunit of the enzyme. J Bacteriol 178:1515

    PubMed  CAS  Google Scholar 

  • Fox JD, He Y, Shelver D, Roberts GP, Ludden PW (1996b) Characterization of the region encoding the CO-induced hydrogenase of Rhodospirillum rubrum. J Bacteriol 178:6200

    PubMed  CAS  Google Scholar 

  • Friedrich B, Buhrke T, Burgdorf T, Lenz O (2005) A hydrogen-sensing multiprotein complex controls aerobic hydrogen metabolism in Ralstonia eutropha. Biochem Soc Trans 33:97

    Article  PubMed  CAS  Google Scholar 

  • Friedrich T (2001) Complex I: a chimaera of a redox and conformation-driven proton pump? J Bioenerg Biomembr 33:169

    Article  PubMed  CAS  Google Scholar 

  • Friedrich T, Weiss H (1997) Modular evolution of the respiratory NADH:ubiquinone oxidoreductase and the origin of its modules. J Theor Biol 187:529

    Article  PubMed  CAS  Google Scholar 

  • Friedrich T, Scheide D (2000) The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases. FEBS Lett 479:1

    Article  PubMed  CAS  Google Scholar 

  • Friedrich T, Abelmann A, Brors B, Guenebaut V, Kintscher L, Leonard K, Rasmussen T, Scheide D, Schlitt A, Schulte U, Weiss H (1998) Redox components and structure of the respiratory NADH:ubiquinone oxidoreductase (complex I). Biochim Biophys Acta 1365:215

    Article  PubMed  CAS  Google Scholar 

  • Garcin E, Vernede X, Hatchikian EC, Volbeda A, Frey M, Fontecilla-Camps JC (1999) The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center. Structure 7:557

    Article  PubMed  CAS  Google Scholar 

  • Gross R, Simon J, Kröger A (1999) The role of the twin-arginine motif in the signal peptide encoded by the hydA gene of the hydrogenase from Wolinella succinogenes. Arch Microbiol 172:227

    Article  PubMed  CAS  Google Scholar 

  • Gross R, Pisa R, Sanger M, Lancaster CR, Simon J (2004) Characterization of the menaquinone reduction site in the diheme cytochrome b membrane anchor of Wolinella succinogenes NiFe-hydrogenase. J Biol Chem 279:274

    Article  PubMed  CAS  Google Scholar 

  • Hackstein JH (2005) Eukaryotic Fe-hydrogenases – old eukaryotic heritage or adaptive acquisitions? Biochem Soc Trans 33:47

    Article  PubMed  CAS  Google Scholar 

  • Hackstein JH, Akhmanova A, Voncken F, van Hoek A, van Alen T, Boxma B, Moon-van der Staay SY, van der Staay G, Leunissen J, Huynen M, Rosenberg J, Veenhuis M (2001) Hydrogenosomes: convergent adaptations of mitochondria to anaerobic environments. Zoology (Jena) 104:290

    CAS  Google Scholar 

  • Hamamoto T, Hashimoto M, Hino M, Kitada M, Seto Y, Kudo T, Horikoshi K (1994) Characterization of a gene responsible for the Na+/H+ antiporter system of alkalophilic Bacillus species strain C-125. Mol Microbiol 14:939

    Article  PubMed  CAS  Google Scholar 

  • Happe RP, Roseboom W, Pierik AJ, Albracht SP, Bagley KA (1997) Biological activation of hydrogen. Nature 385:126

    Article  PubMed  CAS  Google Scholar 

  • Happe T, Hemschemeier A, Winkler M, Kaminski A (2002) Hydrogenases in green algae: do they save the algae's life and solve our energy problems? Trends Plant Sci 7:246

    Article  PubMed  CAS  Google Scholar 

  • Hedderich R (2004) Energy-converting [NiFe] hydrogenases from archaea and extremophiles: ancestors of complex I. J Bioenerg Biomembr 36:65

    Article  PubMed  CAS  Google Scholar 

  • Hedderich R, Forzi L (2005) Energy-converting [NiFe] hydrogenases: more than just H2 activation. J Mol Microbiol Biotechnol 10:92

    Article  PubMed  CAS  Google Scholar 

  • Hedderich R, Whitman WB (2006) Physiology and biochemistry of the methane-producing Archaea. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, vol 2. Ecophysiology and biochemistry. Springer, Heidelberg Berlin New York, pp 1050–1079

    Google Scholar 

  • Henry M-F, Vignais PM (1983) Electron pathways from H2 to nitrate in Paracoccus denitrificans: Effects of inhibitors of the UQ-cytochrome b region. Arch Microbiol 169:98

    Google Scholar 

  • Higuchi Y, Yagi T, Yasuoka N (1997) Unusual ligand structure in Ni–Fe active center and an additional Mg site in hydrogenase revealed by high resolution X-ray structure analysis. Structure 5:1671

    Article  PubMed  CAS  Google Scholar 

  • Hillmer P, Gest H (1977) H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. J Bacteriol 129:724

    PubMed  CAS  Google Scholar 

  • Hinchliffe P, Carroll J, Sazanov LA (2006) Identification of a novel subunit of respiratory complex I from Thermus thermophilus. Biochemistry 45:4413

    Article  PubMed  CAS  Google Scholar 

  • Hinkle PC (2005) P/O ratios of mitochondrial oxidative phosphorylation. Biochim Biophys Acta 1706:1

    Article  PubMed  CAS  Google Scholar 

  • Hirst J, Carroll J, Fearnley IM, Shannon RJ, Walker JE (2003) The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim Biophys Acta 1604:135

    Article  PubMed  CAS  Google Scholar 

  • Holt PJ, Morgan DJ, Sazanov LA (2003) The location of NuoL and NuoM subunits in the membrane domain of the Escherichia coli complex I: implications for the mechanism of proton pumping. J Biol Chem 278:43114

    Article  PubMed  CAS  Google Scholar 

  • Horner DS, Foster PG, Embley TM (2000) Iron hydrogenases and the evolution of anaerobic eukaryotes. Mol Biol Evol 17:1695

    PubMed  CAS  Google Scholar 

  • Horner DS, Heil B, Happe T, Embley TM (2002) Iron hydrogenases – ancient enzymes in modern eukaryotes. Trends Biochem Sci 27:148

    Article  PubMed  CAS  Google Scholar 

  • Ide T, Bäumer S, Deppenmeier U (1999) Energy conservation by the H2:heterodisulfide oxidoreductase from Methanosarcina mazei Gö1: identification of two proton-translocating segments. J Bacteriol 181:4076

    PubMed  CAS  Google Scholar 

  • Ito M, Guffanti AA, Oudega B, Krulwich TA (1999) mrp, a multigene, multifunctional locus in Bacillus subtilis with roles in resistance to cholate and to Na+ and in pH homeostasis. J Bacteriol 181:2394

    PubMed  CAS  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions (supplement). DNA Res 3:185

    Article  PubMed  CAS  Google Scholar 

  • Kashani-Poor N, Zwicker K, Kerscher S, Brandt U (2001) A central functional role for the 49-kDa subunit within the catalytic core of mitochondrial complex I. J Biol Chem 276:24082

    Article  PubMed  CAS  Google Scholar 

  • Klemme JH (1969) Studies on the mechanism of NAD-photoreduction by chromatophores of the facultative phototroph, Rhodopseudomonas capsulata. Z Naturforsch B 24:67

    PubMed  CAS  Google Scholar 

  • Kömen R, Schmidt K, Zannoni D (1996) Hydrogen oxidation by membranes from autotrophically grown Alcaligenes eutrophus H16: role of the cyanide-resistant pathway in energy transduction. Arch Microbiol 165:418

    Article  PubMed  Google Scholar 

  • Kosono S, Kajiyama Y, Kawasaki S, Yoshinaka T, Haga K, Kudo T (2006) Functional involvement of membrane-embedded and conserved acidic residues in the ShaA subunit of the multigene-encoded Na+/H+ antiporter in Bacillus subtilis. Biochim Biophys Acta 1758:627

    Article  PubMed  CAS  Google Scholar 

  • Krebs W, Steuber J, Gemperli AC, Dimroth P (1999) Na+ translocation by the NADH:ubiquinone oxidoreductase (complex I) from Klebsiella pneumoniae. Mol Microbiol 33:590

    Article  PubMed  CAS  Google Scholar 

  • Kröger A, Biel S, Simon J, Gross R, Unden G, Lancaster CR (2002) Fumarate respiration of Wolinella succinogenes: enzymology, energetics and coupling mechanism. Biochim Biophys Acta 1553:23

    Article  PubMed  Google Scholar 

  • Künkel A, Vorholt JA, Thauer RK, Hedderich R (1998) An Escherichia coli hydrogenase-3-type hydrogenase in methanogenic archaea. Eur J Biochem 252:467

    Article  PubMed  Google Scholar 

  • Lancaster CR, Sauer US, Gross R, Haas AH, Graf J, Schwalbe H, Mäntele W, Simon J, Madej MG (2005) Experimental support for the “E pathway hypothesis” of coupled transmembrane e and H+ transfer in dihemic quinol:fumarate reductase. Proc Natl Acad Sci USA 102:18860

    Article  PubMed  CAS  Google Scholar 

  • Lill R, Mühlenhoff U (2005) Iron-sulfur-protein biogenesis in eukaryotes. Trends Biochem Sci 30:133

    Article  PubMed  CAS  Google Scholar 

  • López-Garcia P, Moreira D (1999) Metabolic symbiosis at the origin of eukaryotes. Trends Biochem Sci 24:88

    Article  PubMed  Google Scholar 

  • Lyon EJ, Shima S, Buurman G, Chowdhuri S, Batschauer A, Steinbach K, Thauer RK (2004) UV-A/blue-light inactivation of the “metal-free” hydrogenase (Hmd) from methanogenic archaea. Eur J Biochem 271:195

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37

    Article  PubMed  CAS  Google Scholar 

  • Mathiesen C, Hägerhäll C (2002) Transmembrane topology of the NuoL, M and N subunits of NADH:quinone oxidoreductase and their homologues among membrane-bound hydrogenases and bona fide antiporters. Biochim Biophys Acta 1556:121

    Article  PubMed  CAS  Google Scholar 

  • Mathiesen C, Hägerhäll C (2003) The “antiporter module” of respiratory chain complex I includes the MrpC/NuoK subunit – a revision of the modular evolution scheme. FEBS Lett 549:7

    Article  PubMed  CAS  Google Scholar 

  • Matias PM, Soares CM, Saraiva LM, Coelho R, Morais J, Le Gall J, Carrondo MA (2001) [NiFe] hydrogenase from Desulfovibrio desulfuricans ATCC 27774: gene sequencing, three-dimensional structure determination and refinement at 1.8 A and modelling studies of its interaction with the tetrahaem cytochrome c 3. J Biol Inorg Chem 6:63

    Article  PubMed  CAS  Google Scholar 

  • Meek L, Arp DJ (2000) The hydrogenase cytochrome b heme ligands of Azotobacter vinelandii are required for full H2 oxidation capability. J Bacteriol 182:3429

    Article  PubMed  CAS  Google Scholar 

  • Meuer J, Bartoschek S, Koch J, Künkel A, Hedderich R (1999) Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri. Eur J Biochem 265:325

    Article  PubMed  CAS  Google Scholar 

  • Montet Y, Amara P, Volbeda A, Vernede X, Hatchikian EC, Field MJ, Frey M, Fontecilla-Camps JC (1997) Gas access to the active site of Ni–Fe hydrogenases probed by X-ray crystallography and molecular dynamics. Nat Struct Biol 4:523

    Article  PubMed  CAS  Google Scholar 

  • Moreira D, López-Garcia P (1998) Symbiosis between methanogenic archaea and delta-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J Mol Evol 47:517

    Article  PubMed  CAS  Google Scholar 

  • Mori H, Cline K (2001) Post-translational protein translocation into thylakoids by the Sec and DeltapH-dependent pathways. Biochim Biophys Acta 1541:80

    Article  PubMed  CAS  Google Scholar 

  • Mori H, Cline K (2002) A twin arginine signal peptide and the pH gradient trigger reversible assembly of the thylakoid ∆pH/Tat translocase. J Cell Biol 157:205

    Article  PubMed  CAS  Google Scholar 

  • Mühlenhoff U, Lill R (2000) Biogenesis of iron-sulfur proteins in eukaryotes: a novel task of mitochondria that is inherited from bacteria. Biochim Biophys Acta 1459:370

    Article  PubMed  Google Scholar 

  • Müller M (1993) The hydrogenosome. J Gen Microbiol 139:2879

    PubMed  Google Scholar 

  • Nealson KH, Inagaki F, Takai K (2005) Hydrogen-driven subsurface lithoautotrophic microbial ecosystems (SLIMEs): do they exist and why should we care? Trends Microbiol 13:405

    Article  PubMed  CAS  Google Scholar 

  • Nicholls DG, Ferguson SJ (1992) Bioenergetics 2. Academic Press, London

    Google Scholar 

  • Nicolet Y, Cavazza C, Fontecilla-Camps JC (2002) Fe-only hydrogenases: structure, function and evolution. J Inorg Biochem 91:1

    Article  PubMed  CAS  Google Scholar 

  • Nicolet Y, Lemon BJ, Fontecilla-Camps JC, Peters JW (2000) A novel FeS cluster in Fe-only hydrogenases. Trends Biochem Sci 25:138

    Article  PubMed  CAS  Google Scholar 

  • Nicolet Y, Piras C, Legrand P, Hatchikian CE, Fontecilla-Camps JC (1999) Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 7:13

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi T, Sled VD, Yano T, Yagi T, Burbaev DS, Vinogradov AD (1998) Structure-function studies of iron-sulfur clusters and semiquinones in the NADH-Q oxidoreductase segment of the respiratory chain. Biochim Biophys Acta 1365:301

    Article  PubMed  CAS  Google Scholar 

  • Palmer T, Sargent F, Berks BC (2005) Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends Microbiol 13:175

    Article  PubMed  CAS  Google Scholar 

  • Paul F, Colbeau A, Vignais PM (1979) Phosphorylation coupled to H2 oxidation by chromatophores from Rhodopseudomonas capsulata. FEBS Lett 106:29

    Article  PubMed  CAS  Google Scholar 

  • Peters JW (1999) Structure and mechanism of iron-only hydrogenases. Curr Opin Struct Biol 9:670

    Article  PubMed  CAS  Google Scholar 

  • Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Å resolution. Science 282:1853

    Article  PubMed  CAS  Google Scholar 

  • Pilak O, Mamat B, Vogt S, Hagemeier CH, Thauer RK, Shima S, Vonrhein C, Warkentin E, Ermler U (2006) The crystal structure of the apoenzyme of the iron-sulphur cluster-free hydrogenase. J Mol Biol 358:798

    Article  PubMed  CAS  Google Scholar 

  • Pilkington SJ, Skehel JM, Gennis RB, Walker JE (1991) Relationship between mitochondrial NADH-ubiquinone reductase and a bacterial NAD-reducing hydrogenase. Biochemistry 30:2166

    Article  PubMed  CAS  Google Scholar 

  • Porte F, Vignais PM (1980) Electron transport chain and energy transduction in Paracoccus denitrificans under autotrophic growth conditions. Arch Microbiol 127:1

    Article  CAS  Google Scholar 

  • Prieur I, Lunardi J, Dupuis A (2001) Evidence for a quinone binding site close to the interface between NUOD and NUOB subunits of complex I. Biochim Biophys Acta 1504:173

    Article  PubMed  CAS  Google Scholar 

  • Rákhely G, Colbeau A, Garin J, Vignais PM, Kovács KL (1998) Unusual organization of the genes coding for HydSL, the stable [NiFe]hydrogenase in the photosynthetic bacterium Thiocapsa roseopersicina BBS. J Bacteriol 180:1460

    PubMed  Google Scholar 

  • Rákhely G, Kovács AT, Maróti G, Fodor BD, Csanádi G, Latinovics D, Kovács KL (2004) Cyanobacterial-type, heteropentameric, NAD+-reducing NiFe hydrogenase in the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina. Appl Environ Microbiol 70:722

    Article  PubMed  CAS  Google Scholar 

  • Richardson DJ (2000) Bacterial respiration: a flexible process for a changing environment. Microbiology 146(Pt3):551

    PubMed  CAS  Google Scholar 

  • Rodrigue A, Chanal A, Beck K, Müller M, Wu LF (1999) Co-translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial tat pathway. J Biol Chem 274:13223

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues R, Valente FM, Pereira IA, Oliveira S, Rodrigues-Pousada C (2003) A novel membrane-bound Ech [NiFe] hydrogenase in Desulfovibrio gigas. Biochem Biophys Res Commun 306:366

    Article  PubMed  CAS  Google Scholar 

  • Rossi M, Pollock WB, Reij MW, Keon RG, Fu R, Voordouw G (1993) The hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough encodes a potential transmembrane redox protein complex. J Bacteriol 175:4699

    PubMed  CAS  Google Scholar 

  • Sapra R, Verhagen MF, Adams MW (2000) Purification and characterization of a membrane-bound hydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 182:3423

    Article  PubMed  CAS  Google Scholar 

  • Sapra R, Bagramyan K, Adams MW (2003) A simple energy-conserving system: proton reduction coupled to proton translocation. Proc Natl Acad Sci USA 100:7545

    Article  PubMed  CAS  Google Scholar 

  • Sargent F, Berks BC, Palmer T (2002) Assembly of membrane-bound respiratory complexes by the Tat protein-transport system. Arch Microbiol 178:77

    Article  PubMed  CAS  Google Scholar 

  • Sargent F, Bogsch EG, Stanley NR, Wexler M, Robinson C, Berks BC, Palmer T (1998) Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO J 17:3640

    Article  PubMed  CAS  Google Scholar 

  • Sauter M, Böhm R, Böck A (1992) Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Mol Microbiol 6:1523

    Article  PubMed  CAS  Google Scholar 

  • Sawers RG, Blokesch M, Böck A (2004) Anaerobic formate and hydrogen metabolism. In: Curstiss IR (ed) EcoSal-Escherichia coli and Salmonella: Cellular and molecular biology. Online http://www.ecosal.org , Chapter 3.5.4. ASM, Washington, DC

  • Sayavedra-Soto LA, Arp DJ (1992) The hoxZ gene of the Azotobacter vinelandii hydrogenase operon is required for activation of hydrogenase. J Bacteriol 174:5295

    PubMed  CAS  Google Scholar 

  • Sazanov LA, Hinchliffe P (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311(5766):1430–1436

    Article  PubMed  CAS  Google Scholar 

  • Sazanov LA, Peak-Chew SY, Fearnley IM, Walker JE (2000) Resolution of the membrane domain of bovine complex I into subcomplexes: implications for the structural organization of the enzyme. Biochemistry 39:7229

    Article  PubMed  CAS  Google Scholar 

  • Schmitz O, Boison G, Salzmann H, Bothe H, Schutz K, Wang SH, Happe T (2002) HoxE–a subunit specific for the pentameric bidirectional hydrogenase complex (HoxEFUYH) of cyanobacteria. Biochim Biophys Acta 1554:66

    Article  PubMed  CAS  Google Scholar 

  • Schneider K, Schlegel HG (1976) Purification and properties of soluble hydrogenase from Alcaligenes eutrophus H 16. Biochim Biophys Acta 452:66

    PubMed  CAS  Google Scholar 

  • Schultz BE, Chan SI (2001) Structures and proton-pumping strategies of mitochondrial respiratory enzymes. Annu Rev Biophys Biomol Struct 30:23

    Article  PubMed  CAS  Google Scholar 

  • Schwartz E, Henne A, Cramm R, Eitinger T, Friedrich B, Gottschalk G (2003) Complete nucleotide sequence of pHG1: a Ralstonia eutropha H 16 megaplasmid encoding key enzymes of H2-based lithoautotrophy and anaerobiosis. J Mol Biol 332:369

    Article  PubMed  CAS  Google Scholar 

  • Silva PJ, van den Ban EC, Wassink H, Haaker H, de Castro B, Robb FT, Hagen WR (2000) Enzymes of hydrogen metabolism in Pyrococcus furiosus. Eur J Biochem 267:6541

    Article  PubMed  CAS  Google Scholar 

  • Skibinski DAG, Golby P, Chang Y-S, Sargent F, Hoffman R, Harper R, Guest JR, Attwood MM, Berks BC, Andrews SC (2002) Regulation of the hydrogenase-4 operon of Escherichia coli by the σ54-dependent transcriptional activators FhlA and HyfR. J Bacteriol 184:6642

    Article  PubMed  CAS  Google Scholar 

  • Soboh B, Linder D, Hedderich R (2002) Purification and catalytic properties of a CO-oxidizing:H2-evolving enzyme complex from Carboxydothermus hydrogenoformans. Eur J Biochem 269:5712

    Article  PubMed  CAS  Google Scholar 

  • Steuber J (2001) The Na+-translocating NADH:quinone oxidoreductase (NDH I) from Klebsiella pneumoniae and Escherichia coli: implications for the mechanism of redox-driven cation translocation by complex I. J Bioenerg Biomembr 33:179

    Article  PubMed  CAS  Google Scholar 

  • Stolpe S, Friedrich T (2004) The Escherichia coli NADH:ubiquinone oxidoreductase (complex I) is a primary proton pump but may be capable of secondary sodium antiport. J Biol Chem 279:18377

    Article  PubMed  CAS  Google Scholar 

  • Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wunschiers R, Lindblad P (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66:1

    Article  PubMed  CAS  Google Scholar 

  • Tersteegen A, Hedderich R (1999) Methanobacterium thermoautotrophicum encodes two multisubunit membrane-bound [NiFe] hydrogenases. Transcription of the operons and sequence analysis of the deduced proteins. Eur J Biochem 264:930

    Article  PubMed  CAS  Google Scholar 

  • Tian F, Toon OB, Pavlov AA, De Sterck H (2005) A hydrogen-rich early Earth atmosphere. Science 308:1014

    Article  PubMed  CAS  Google Scholar 

  • Tichi MA, Meijer WG, Tabita FR (2001) Complex I and its involvement in redox homeostasis and carbon and nitrogen metabolism in Rhodobacter capsulatus. J Bacteriol 183:7285

    Article  PubMed  CAS  Google Scholar 

  • Tjaden J, Haferkamp I, Boxma B, Tielens AG, Huynen M, Hackstein JH (2004) A divergent ADP/ATP carrier in the hydrogenosomes of Trichomonas gallinae argues for an independent origin of these organelles. Mol Microbiol 51:1439

    Article  PubMed  CAS  Google Scholar 

  • Vignais PM, Colbeau A, Willison JC, Jouanneau Y (1985) Hydrogenase, nitrogenase, and hydrogen metabolism in the photosynthetic bacteria. Adv Microb Physiol 26:155

    Article  PubMed  CAS  Google Scholar 

  • Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455

    PubMed  CAS  Google Scholar 

  • Vignais PM, Willison JC, Colbeau A (2004) H2 respiration. In: Zannoni D (ed) Respiration in Archaea and Bacteria: Diversity of prokaryotic respiratory systems. Advances in photosynthesis and respiration, vol 2. Springer, Berlin Heidelberg New York, pp 233–260

    Google Scholar 

  • Vignais PM, Elsen S, Colbeau A (2005) Transcriptional regulation of the uptake [NiFe]hydrogenase genes in Rhodobacter capsulatus. Biochem Soc Trans 33:28

    Article  PubMed  CAS  Google Scholar 

  • Volbeda A, Charon MH, Piras C, Hatchikian EC, Frey M, Fontecilla-Camps JC (1995) Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373:580

    Article  PubMed  CAS  Google Scholar 

  • Volbeda A, Garcin E, Piras C, De Lacey AL, Fernandez VM, Hatchikian EC, Frey M, Fontecilla-Camps JC (1996) Structure of the [NiFe] hydrogenase active site: evidence for biologically uncommon Fe ligands. J Am Chem Soc 118:12989

    Article  CAS  Google Scholar 

  • Weidner U, Geier S, Ptock A, Friedrich T, Leif H, Weiss H (1993) The gene locus of the proton-translocating NADH: ubiquinone oxidoreductase in Escherichia coli. Organization of the 14 genes and relationship between the derived proteins and subunits of mitochondrial complex I. J Mol Biol 233:109

    Article  PubMed  CAS  Google Scholar 

  • Weiner JH, Bilous PT, Shaw GM, Lubitz SP, Frost L, Thomas GH, Cole JA, Turner RJ (1998) A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell 93:93

    Article  PubMed  CAS  Google Scholar 

  • Willison JC (1993) Biochemical genetics revisited: the use of mutants to study carbon and nitrogen metabolism in the photosynthetic bacteria. FEMS Microbiol Rev 10:1

    PubMed  CAS  Google Scholar 

  • Wu LF, Chanal A, Rodrigue A (2000) Membrane targeting and translocation of bacterial hydrogenases. Arch Microbiol 173:319

    Article  PubMed  CAS  Google Scholar 

  • Yagi T (1993) The bacterial energy-transducing NADH-quinone oxidoreductases. Biochim Biophys Acta 1141:1

    Article  PubMed  CAS  Google Scholar 

  • Yagi T, Yano T, Di Bernardo S, Matsuno-Yagi A (1998) Procaryotic complex I (NDH-1), an overview. Biochim Biophys Acta 1364:125

    Article  PubMed  CAS  Google Scholar 

  • Yahr TL, Wickner WT (2001) Functional reconstitution of bacterial Tat translocation in vitro. Embo J 20:2472

    Article  PubMed  CAS  Google Scholar 

  • Yano T, Ohnishi T (2001) The origin of cluster N2 of the energy-transducing NADH-quinone oxidoreductase: comparisons of phylogenetically related enzymes. J Bioenerg Biomembr 33:213

    Article  PubMed  CAS  Google Scholar 

  • Yen MR, Tseng YH, Nguyen EH, Wu LF, Saier MH Jr (2002) Sequence and phylogenetic analyses of the twin-arginine targeting (Tat) protein export system. Arch Microbiol 177:441

    Article  PubMed  CAS  Google Scholar 

  • Zannoni D, Marrs B (1981) Redox chain and energy transduction in chromatophores from Rhodopseudomonas capsulata cells grown anaerobically in the dark on glucose and dimethylsulfoxide. Biochim Biophys Acta 637:96

    Article  CAS  Google Scholar 

  • Zirngibl C, Van Dongen W, Schworer B, Von Bunau R, Richter M, Klein A, Thauer RK (1992) H2-forming methylenetetrahydromethanopterin dehydrogenase, a novel type of hydrogenase without iron-sulfur clusters in methanogenic archaea. Eur J Biochem 208:511

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulette M. Vignais .

Editor information

Günter Schäfer Harvey S. Penefsky

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vignais, P.M. (2007). Hydrogenases and H+-Reduction in Primary Energy Conservation. In: Schäfer, G., Penefsky, H.S. (eds) Bioenergetics. Results and Problems in Cell Differentiation, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2006_027

Download citation

Publish with us

Policies and ethics