Skip to main content

Full-Field Electroretinograms

  • Chapter
  • 1048 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Granit R (1933) The components of the retinal action potential in mammals and their relation to the discharge in the optic nerve. J Physiol 77:207–239

    Google Scholar 

  2. Riggs LA (1941) Continuous and reproducible records of the electrical activity of the human retina. Proc Soc Exp Biol Med 48:204–207

    Google Scholar 

  3. Karpe G (1945) The basis of clinical electroretinography. Acta Ophthalmol Suppl 24:1–45

    Google Scholar 

  4. Burian HM, Allen L (1954) A speculum contact lens electrode for electroretinography. Electroencephalogr Clin Neurophysiol 6:509–511

    CAS  Google Scholar 

  5. Motokawa K, Mita T (1942) Uber eine einfachere Untersuchungsmethode und Eigenschaften der Aktionsstrome der Netzhaut des Menschen. Tohoku J Exp Med 42:114–133

    Google Scholar 

  6. Yonemura D, Tsuzuki K, Aoki T (1962) Clinical importance of the oscillatory potential in the human ERG. Acta Ophthalmol Suppl 70:115–122

    Google Scholar 

  7. Nagata M (1962) Studies on photopic ERG of human eye. Acta Soc Ophthalmol Jpn 66:1614–1673

    Google Scholar 

  8. Berson EL, Gouras P, Hoff M (1969) Temporal aspects of the electroretinogram. Arch Ophthalmol 81:207–217

    CAS  PubMed  Google Scholar 

  9. Gouras P (1970) Electroretinography: some basic principles. Invest Ophthalmol 9:557–569

    CAS  PubMed  Google Scholar 

  10. Marmor MF, Zrenner E (1998) Standard for clinical electroretinography (1999 update). Doc Ophthalmol 97:143–156

    Article  PubMed  Google Scholar 

  11. Sieving PA, Frishman LJ, Steinberg RH (1986) Scotopic threshold response of proximal retina in cat. J Neurophysiol 56:1049–1061

    CAS  PubMed  Google Scholar 

  12. Miyake Y, Horiguchi M, Terasaki H, Kondo M (1994) Scotopic threshold response in complete and incomplete types of congenital stationary night blindness. Invest Ophthalmol Vis Sci 35:3770–3775

    CAS  PubMed  Google Scholar 

  13. Brown KT (1968) The electroretinogram: its components and their origin. Vision Res 8:633–677

    CAS  PubMed  Google Scholar 

  14. Newman EA, Odette LL (1984) Model of electroretinogram b-wave generation: a test of the K+ hypothesis. J Neurophysiol 51:164–182

    CAS  PubMed  Google Scholar 

  15. Cobb WA, Morton HB (1954) A new component of the human electroretinogram. J Physiol 123:36–37

    Google Scholar 

  16. Wachtmeister L, Dowling JE (1978) The oscillatory potentials of the mudpuppy retina. Invest Ophthalmol Vis Sci 17:1176–1188

    CAS  PubMed  Google Scholar 

  17. Yonemura D, Kawasaki K (1979) New approaches to ophthalmic electrodiagnosis by retinal oscillatory potential, drug-induced responses from retinal pigment epithelium and cone potential. Doc Ophthalmol 48:163–222

    Article  CAS  PubMed  Google Scholar 

  18. Miyake Y, Horiguchi M, Ota I, Takabayashi A (1988) Adaptational change in cone-mediated electroretinogram in human and carp. Neurosci Res Suppl 8:1–13

    Google Scholar 

  19. Miyake Y (1993) Clinical ERG recordings and data analysis: ISCEV protocol and controversial points. Folia Ophthalmol Jpn 44:519–524

    Google Scholar 

  20. Krakau CE, Nordenfelt L, Ohman R (1977) Routine ERG recording with LED light stimulus. Ophthalmologica 175:199–205

    CAS  PubMed  Google Scholar 

  21. Kooijman AC, Damhof A (1980) ERG lens with built-in Ganzfeld light source of stimulation and adaptation. Invest Ophthalmol Vis Sci 19:315–318

    CAS  PubMed  Google Scholar 

  22. Kondo M, Piao CH, Tanikawa A, Horiguchi M, Miyake Y (2001) A contact lens electrode built-in high intensity white light-emitting diodes. Doc Ophthalmol 102:1–9

    CAS  PubMed  Google Scholar 

  23. Miyake Y, Yagasaki K, Horiguchi M (1991) Electroretinographic monitoring of retinal function during eye surgery. Arch Ophthalmol 109:1123–1126

    CAS  PubMed  Google Scholar 

  24. Horiguchi M, Miyake Y (1991) Effect of temperature on electroretinographic readings during closed vitrectomy in human. Arch Ophthalmol 109:1127–1129

    CAS  PubMed  Google Scholar 

  25. Miyake Y, Horiguchi M (1998) Electroretinographic alterations during vitrectomy in human eyes. Graefe Arch Clin Exp Ophthalmol 236:13–17

    CAS  Google Scholar 

  26. Cooper S, Creed RS, Granit R (1933) A note on the retinal action potential of the human eye. J Physiol 79:185–190

    Google Scholar 

  27. Miyake Y, Yagasaki K, Horiguchi M, Kawase Y (1987) On-and off-responses in photopic electroretinogram in complete and incomplete types of congenital stationary night blindness. Jpn J Ophthalmol 31:81–87

    CAS  PubMed  Google Scholar 

  28. Sieving PA (1993) Photopic on-and off-pathway abnormalities in retinal dystrophies. Trans Am Ophthalmol Soc 91:701–773

    CAS  PubMed  Google Scholar 

  29. Slaughter MM, Miller RF (1981) 2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science 211:182–185

    CAS  PubMed  Google Scholar 

  30. Slaughter MM, Miller RF (1983) Bipolar cells in the mudpuppy retina use an excitatory amino acid neurotransmitter. Nature 303:537–538

    Article  CAS  PubMed  Google Scholar 

  31. Nagata M (1962) Studies on photopic ERG of human eye. Acta Soc Ophthalmol Jpn 66:1614–1673

    Google Scholar 

  32. Padomos P, van Norren D, Jaspers Faijer JW (1978) Blue cone function in a family with an inherited tritan defect, tested with electroretinography and psychophysics. Invest Ophthalmol Vis Sci 17:436–441

    Google Scholar 

  33. Yokoyama M (1979) Blue sensation in eye diseases. Jpn J Clin Ophthalmol 33:111–125

    Google Scholar 

  34. Miyake Y, Yagasaki K, Ichikawa H (1985) Differential diagnosis of congenital tritanopia and dominantly inherited juvenile optic atrophy. Arch Ophthalmol 103:1496–1501

    CAS  PubMed  Google Scholar 

  35. Horiguchi M, Miyake Y, Kondo M, Suzuki S, Tanikawa A, Koo HM (1995) Blue light-emitting diode built-in contact lens electrode can record human S-cone electroretinogram. Invest Ophthalmol Vis Sci 36:1730–1732

    CAS  PubMed  Google Scholar 

  36. Kolb H, Lipets LE (1991) The anatomical basis for color vision in the vertebrate retina. In: Gouras P (ed) The perception of colour. London, Macmillan, pp 128–145

    Google Scholar 

  37. Burian HM (1954) Electric responses of the human visual system. Arch Ophthalmol 51:509–524

    CAS  Google Scholar 

  38. Armington JC, Biersdorf WR (1958) Long-term light adaptation of the human electroretinogram. J Comp Physiol Psychol 51:1–5

    CAS  PubMed  Google Scholar 

  39. Kawabata H (1960) Course of the potential change in the human electroretinogram during light adaptation. J Opt Soc Am 50:456–461

    CAS  PubMed  Google Scholar 

  40. Hood DC (1972) Adaptational changes in the cone system of the isolated frog retina. Vis Res 12:875–888

    CAS  PubMed  Google Scholar 

  41. Miyake Y, Horiguchi M, Yagasaki K (1986) Increment of the amplitude human photopic ERG during light adaptation. Acta Soc Ophthalmol Jpn 90:1102–1109, 1986

    CAS  Google Scholar 

  42. Horiguchi M, Miyake Y, Takabayashi A (1988) Increment of cone ERG during light adaptation: carp retina (in vivo and in vitro). Acta Soc Ophthalmol Jpn 92:395–402

    CAS  Google Scholar 

  43. Gouras P, MacKay CJ (1989) Growth in amplitude of the human cone electroretinogram with light adaptation. Invest Ophthalmol Vis Sci 30:625–630

    CAS  PubMed  Google Scholar 

  44. Miyake Y, Horiguchi M, Ota I, Shiroyama N (1987) Characteristic ERG flicker anomaly in incomplete congenital stationary night blindness. Invest Ophthalmol Vis Sci 28:1816–1823

    CAS  PubMed  Google Scholar 

  45. Peachey NS, Alexander KR, Fishman GA, Derlacki DJ (1989) Properties of the human cone system electroretinogram during light adaptation. Appl Optics 28:1145–1150

    Google Scholar 

  46. Wali N, Leguire LE (1992) The photopic hill: a new phenomenon of the light adapted electroretinogram. Doc Ophthalmol 80:335–342

    CAS  PubMed  Google Scholar 

  47. Kondo M, Piao CH, Tanikawa A, Horiguchi M, Terasaki H, Miyake Y (2000) Amplitude decrease of photopic ERG b-wave at higher stimulus intensities in humans. Doc Ophthalmol 44:20–28

    CAS  Google Scholar 

  48. Ueno S, Kondo M, Niwa Y, Terasaki H, Miyake Y (2004) Luminance dependence of neural components that underlies the primate photopic electroretinogram. Invest Ophthalmol Vis Sci 45:1033–1040

    Article  PubMed  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Tokyo

About this chapter

Cite this chapter

(2006). Full-Field Electroretinograms. In: Electrodiagnosis of Retinal Diseases. Springer, Tokyo. https://doi.org/10.1007/4-431-30306-5_1

Download citation

  • DOI: https://doi.org/10.1007/4-431-30306-5_1

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-25466-9

  • Online ISBN: 978-4-431-30306-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics