Skip to main content

Metabolome Profiling of Human Urine with Capillary Gas Chromatography/Mass Spectrometry

  • Chapter
Book cover Metabolomics
  • 1491 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kuhara T, Shinka T, Inoue Y, Zhen-Wei X, Ohse M, Yoshida I, Inokuchi T, Yamaguchi S, Takayanagi M, Matsumoto I (1999) Pilot study of gas chromatography-mass spectrometric screening of newborn urine for inborn errors of metabolism after treatment with urease. J Chromatogr B 731:141–147

    CAS  Google Scholar 

  2. Chamberlin B, Sweeley CC (1987) Metabolic profiles of urinary organic acids recovered from absorbent filter paper. Clin Chem 33:572–576

    PubMed  CAS  Google Scholar 

  3. Van Gennip AH, Abeling NGGM, Vreken P, Van Kuilenburg ABP (1997) Inborn errors of pyrimidine degradation: clinical, biochemical and molecular aspects. J Inherit Metab Dis 20:203–213

    Article  PubMed  Google Scholar 

  4. Kuhara T, Ohdoi C, Ohse M (2001) Simple gas chromatographic-mass spectrometric procedure for diagnosing pyrimidine degradation defects for prevention of severe anticancer side effects. J Chromatogr B 758:61–74

    CAS  Google Scholar 

  5. Inoue Y, Masuyama H, Ikawa H, Mitsubuchi H, Kuhara T (2003) Monitoring method for pre-and post-liver transplantation in patients with primary hyper-oxaluria type I. J Chromatogr B 792:89–97

    Article  CAS  Google Scholar 

  6. Baker L, Winegrad AI (1970) Fasting hypoglycaemia and metabolic acidosis associated with deficiency of hepatic fructose-1,6-diphosphatase activity. Lancet 2:13–16

    Article  PubMed  CAS  Google Scholar 

  7. Berghe GV (1996) Disorders of gluconeogenesis. J Inherit Metab Dis 19:470–477

    Article  PubMed  Google Scholar 

  8. Dremsek PA, Sacher M, Stögmann W, Gitzelmann R, Bachmann C (1985) Fructose-1,6-diphosphatase deficiency: glycerol excretion during fasting test. Eur J Pediatr 144:203–204

    Article  PubMed  CAS  Google Scholar 

  9. Tanaka K, Budd MA, Efront ML, Isselbacher KJ (1966) Isovaleric acidemia: A new genetic defect of leucine metabolism. Proc Natl Acad Sci USA 56:236–242

    Article  PubMed  CAS  Google Scholar 

  10. Dalgliesh CE, Horning EC, Horning MG, Knox KL, Yarger K (1966) A gas-liquid-chromatographic procedure for separating a wide range of metabolites occurring in urine or tissue extracts. Biochem J 101:792–810

    PubMed  Google Scholar 

  11. Horning MG (1968) Gas phase analytical methods for the study of urinary acids. In: Szymanski A (ed) Biomedical applications of gas chromatography, vol. 2. Plenum, New York, pp 53–86

    Google Scholar 

  12. Goodman SI, Markey SP (1981) Diagnosis of organic acidemias by gas chromatography-mass spectrometry. Liss, New York

    Google Scholar 

  13. Chalmers RA, Lawson AM (1982) Organic acids in man. Analytical chemistry, biochemistry and diagnosis of organic acidurias. Chapman and Hall, London

    Google Scholar 

  14. Kuhara T (2001) Diagnosis of inborn errors of metabolism using filter paper urine, urease treatment, isotope dilution and gas chromatography-mass spectrometry. J Chromatogr B 758:3–25

    CAS  Google Scholar 

  15. Jaakonmaki PI, Knox KL, Horning EC, Horning MG (1967) The characterization by gas-liquid chromatography of ethyl β-D-glucosiduronic acid as a metabolite of ethanol in rat and man. Eur J Pharmacol 1:63–70

    Article  PubMed  CAS  Google Scholar 

  16. Chalmers RA, Watts RWE (1972) The quantitative extraction and gas-liquid chromatographic determination of organic acids in urine. Analyst 97:958–967

    Article  Google Scholar 

  17. Gates SC, Sweeley CC, Krivit W, DeWitt D, Blaisdell BE (1978) Automated metabolic profiling of organic acids in human urine. II. Analysis of urine samples from “healthy” adults, sick children, and children with neuroblastoma. Clin Chem 24:1680–1689

    PubMed  CAS  Google Scholar 

  18. Nakai A, Shigematsu Y, Lin YY, Kikawa Y, Sudo M (1993) Urinary sugar phosphates and related organic acids in fructose-1,6-diphosphatase deficiency. J. Inherit Metab Dis 16:408–418

    Article  PubMed  CAS  Google Scholar 

  19. Hoffmann G, Aramaki S, Blum-Hoffmann E, Nyhan WL, Sweetman L (1989) Quantitative analysis for organic acids in biological samples: batch isolation followed by gas chromatographic-mass spectrometric analysis. Clin Chem 35:587–595

    PubMed  CAS  Google Scholar 

  20. Sweetman L (1991) Organic acid analysis. In: Hommes FA (ed) Techniques in diagnostic human biochemical genetics. A laboratory manual. Wiley-Liss, New York, pp 143–176

    Google Scholar 

  21. Duez P, Kumps A, Mardens Y (1996) GC-MS profiling of urinary organic acids evaluated as a quantitative method. Clin Chem 42:1609–1615

    PubMed  CAS  Google Scholar 

  22. Shoemaker JD, Elliott WH (1991) Automated screening of urine samples for carbohydrates, organic and amino acids after treatment with urease. J Chromatogr 562:125–138

    PubMed  CAS  Google Scholar 

  23. Matsumoto I, Kuhara T (1996) A new chemical diagnostic method for inborn errors of metabolism by mass spectrometry. Mass Spectrom Rev 15:43–57

    Article  CAS  Google Scholar 

  24. Matsumoto I, Shinka T, Kuhara T, Ooura T, Yamamoto H, Hase Y, Aoki H, Issiki G, Tada K (1978) Investigation of unusual metabolites in the urine of a patient with propionic acidemia. In: Frigerio A (ed) Recent developments in mass spectrometry. Biochem Med 1. Plenum, New York, pp 203–216

    Google Scholar 

  25. Kuhara T, Matsumoto I (1980) Studies on the urinary acidic metabolites from three patients with methylmalonic aciduria. Biomed Mass Spectrom 7:424–428

    Article  PubMed  CAS  Google Scholar 

  26. Matsumoto I (1981) Metabolic profiling of biological materials by a gas chromatography-mass spectrometry-computer system. In: Frigerio A (ed) Recent developments in mass spectrometry. Biochem Med Environ Res 7. Elsevier, Amsterdam, pp 57–68

    Google Scholar 

  27. Kuhara T, Shinka T, Matsuo M, Matsumoto I (1982) Increased excretion of lactate, glutarate, 3-hydroxyisovalerate and 3-methylglutaconate during clinical episodes of propionic acidemia. Clin Chim Acta 123:101–109

    Article  PubMed  CAS  Google Scholar 

  28. Kuhara T, Shinka T, Inoue Y, Matsumoto M, Yoshino M, Sakaguchi Y, Matsumoto I (1983) Studies of urinary organic acid profiles of a patient with dihydrolipoyl dehydrogenase deficiency. Clin Chim Acta 133:133–140

    Article  PubMed  CAS  Google Scholar 

  29. Matsumoto I, Kuhara T (1987) Gas chromatography-mass spectrometry for chemical diagnosis of the inherited metabolic diseases-differential chemical diagnosis of lactic acidosis. Mass Spectrom Rev 6:77–134

    Article  CAS  Google Scholar 

  30. Matsumoto I, Kuhara T (1993) Inborn errors of amino acid and organic acid metabolism. In: Desiderio DM (ed) Clinical mass spectrometry, vol. 1: Clinical and biomedical applications. Plenum, New York, pp 259–298

    Google Scholar 

  31. Matsumoto I (ed) (1993) Advances in chemical diagnosis and treatment of metabolic disorders, vol. 1. Wiley, Chichester, pp 1–162

    Google Scholar 

  32. Matsumoto I, Kuhara T, Mamer OA, Sweetman L, Calderhead RG (eds) (1994) Advances in chemical diagnosis and treatment of metabolic disorders, vol. 2. Kanazawa Medical University Press, Kanazawa, pp 1–199

    Google Scholar 

  33. Matsumoto I, Sakamoto S, Kuhara T, Sudo M, Yoshino M (eds) (1995) GC/MS practical chemical diagnosis. Soft Science, Tokyo, pp 1–455

    Google Scholar 

  34. Kuhara T (2002) Diagnosis and monitoring of inborn errors of metabolism using urease—pretreatment of urine, isotope dilution, and gas chromatography-mass spectrometry. J Chromatogr B 781:497–517

    Article  CAS  Google Scholar 

  35. Kuhara T (2004) Gas chromatographic-mass spectrometric urinary metabolome analysis to study mutations of inborn errors of metabolism. Mass Spectrom Rev on-line. Accessed Sep 16, 2004.

    Google Scholar 

  36. Kuhara T, Matsumoto I (1995) A simultaneous gas chromatographic mass spectrometric analysis urinary metabolites-application to the neonatal mass screening. Proc Jap Soc Biomed Mass Spectrom 20:45–51

    CAS  Google Scholar 

  37. Davies SEC, Iles RA, Stacey TE, Chalmers RA (1990) Creatine metabolism during metabolic perturbations in patients with organic acidurias. Clin Chim Acta 194:203–217

    Article  PubMed  CAS  Google Scholar 

  38. Knapp DR (1979) Handbook of analytical derivatization reactions. Wiley, New York, pp 1–21

    Google Scholar 

  39. Gates SC, Dendramis N, Sweeley CC (1978b) Automated metabolic profiling of organic acids in human urine. I. Description methods. Clin Chem 24:1674–1679

    PubMed  CAS  Google Scholar 

  40. Ohie T, Fu X, Iga M, Kimura M, Yamaguchi S (2000) Gas chromatography-mass spectrometry with tert-butyldimethylsilyl derivation: use of the simplified sample preparations and the automated date system to screen for organic acidemias. J Chromatogr B 746:63–73

    CAS  Google Scholar 

  41. Thompson JA, Markey SP (1975) Quantitative metabolic profiling of urinary organic acids by gas chromatography-mass spectrometry: Comparison of isolation methods. Anal Chem 47:1313–1321

    Article  PubMed  CAS  Google Scholar 

  42. Adams MA, Chen Z, Landman P, Colmer TD (1999) Simultaneous determination by capillary gas chromatography of organic acids, sugars, and sugar alcohols in plant tissue extracts as their trimethylsilyl derivatives. Anal Biochem 266:77–84

    Article  PubMed  CAS  Google Scholar 

  43. Husek P (1995) Simultaneous profile analysis of plasma amino and organic acids by capillary gas chromatography. J Chromatogr B 669:352–357

    CAS  Google Scholar 

  44. Ning C, Kuhara T, Inoue Y, Zhang C, Matsumoto M, Shinka T, Furumoto T, Yokota K, Matsumoto I (1996) Gas chromatographic-mass spectrometric metabolic profiling of patients with fatal infantile mitochondrial myopathy—de Toni-Fanconi-Debré syndrome. Acta Paediatr Jpn 38:661–666

    PubMed  CAS  Google Scholar 

  45. Roessner U, Luedemann A, Brust d, Fiehn O, Linke T, Willmitzer L, Fernie AR (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29

    Article  PubMed  CAS  Google Scholar 

  46. Villas-Bôas SG, Delicado DG, Akesson M, Nielsen J (2003) Simultaneous analysis of amino and nonamino organic acids as methyl chloroformate derivatives using gas chromatography-mass spectrometry. Anal Biochem 322:134–138

    Article  PubMed  Google Scholar 

  47. Van Biervliet JPGM, Bruinvis L, Ketting D, De Bree PK, Van Der Heiden C, Wadaman SK (1977) Hereditary mitochondrial myopathy with lactic acidemia, a De Toni-Franconi-Debré syndrome, and a defective respiratory chain in voluntary striated muscles. Pediatr Res 11:1088–1093

    PubMed  Google Scholar 

  48. Tanaka M, Nishikimi M, Suzuki H, Ozawa T, Okino E, Takahashi H (1986) Multiple cytochrome deficiency and deteriorated mitochondrial polypeptide composition in fatal infantile mitochondrial myopathy and renal dysfunction. Biochem Biophys Res Commun 137:911–916

    Article  PubMed  CAS  Google Scholar 

  49. Yokota K, Kuhara T, Matsumoto I (1994) Abnormal metabolism of carbohydrate and fatty acids in mitochondrial disorders. In: Matsumoto I, Kuhara T, Mamer OA, Sweetman L, Calderhead RG (eds) Advances in chemical diagnosis and treatment of metabolic disorders, vol. 2. Kanazawa Medical University Press, Kanazawa, pp 143–152

    Google Scholar 

  50. Duran M, Beemer FA, Bruinvis L, Ketting D, Wadman SK (1987) d-Glyceric acidemia: an inborn error associated with fructose metabolism. Pediatr Res 21:502–506

    PubMed  CAS  Google Scholar 

  51. Kaunzinger A, Rechner A, Beck T, Mosandl A, Sewell AC, Bohles H (1996) Chiral compounds as indicators of inherited metabolic disease. Simultaneous stereodifferentiation of lactic-, 2-hydroxyglutaric-and glyceric acid by enantioselective cGC. Enantiomer 1:177–182

    PubMed  CAS  Google Scholar 

  52. Kamerling JP, Gerwig GJ, Vliegenthart JF (1977) Determination of the configurations of lactic and glyceric acids from human serum and urine by capillary gas-liquid chromatography. J Chromatogr 143:117–123

    PubMed  CAS  Google Scholar 

  53. Kuhara T, Ohse M, Inoue Y, Yorifuji T, Sakura N, Mitsubuchi H, Endo F, Ishimatu J (2002) Gas chromatographic-mass spectrometric newborn screening for propionic acidaemia by targeting methylcitrate in dried filter-paper urine samples. J Inherit Metab Dis 25:98–106

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Kuhara, T. (2005). Metabolome Profiling of Human Urine with Capillary Gas Chromatography/Mass Spectrometry. In: Tomita, M., Nishioka, T. (eds) Metabolomics. Springer, Tokyo. https://doi.org/10.1007/4-431-28055-3_5

Download citation

Publish with us

Policies and ethics