Skip to main content
Book cover

Metabolomics pp 167–192Cite as

Chemical Diagnosis of Inborn Errors of Metabolism and Metabolome Analysis of Urine by Capillary Gas Chromatography/Mass Spectrometry

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kuhara T (2004) Gas chromatographic-mass spectrometric urinary metabolome analysis to study mutations of inborn errors of metabolism. Mass Spectrom Rev 2004; on-line, accessed Sep 16

    Google Scholar 

  2. Prietsch V, Lindner M, Zschocke J, Nyhan WL (2002) Emergency management of inherited metabolic diseases. J Inher Metab Dis 25:531–546

    Article  PubMed  CAS  Google Scholar 

  3. Brusilow SW, Horwich A (2001) Urea cycle enzymes In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 1909–1963

    Google Scholar 

  4. Valle D, Simell O (2001) The hyperornithinemias In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 1857–1895

    Google Scholar 

  5. Simell O (2001) Lysinuric protein intolerance and other cationic amino acidurias In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 4933–4956

    Google Scholar 

  6. Bachmann C, Colombo JP (1980) Diagnostic value of orotic acid excretion in heritable disorders of the urea cycle and in hyperammonemia due to organic acidurias. Eur J Pediatr 134:109–113

    Article  PubMed  CAS  Google Scholar 

  7. Kuhara T (2001) Diagnosis of inborn errors of metabolism using filter paper urine, urease treatment, isotope dilution and gas chromatography-mass spectrometry. J Chromatogr B 758:3–25

    CAS  Google Scholar 

  8. Kuhara T (2002) Diagnosis and monitoring of inborn errors of metabolism using urease-pretreatment of urine, isotope dilution, and gas chromatography-mass spectrometry. J Chromatogr B 781:497–517

    Article  CAS  Google Scholar 

  9. Matsumoto I, Kuhara T (1996) A new chemical diagnostic method for inborn errors of metabolism by mass spectrometry. Mass Spectrom Rev 15:43–57

    Article  CAS  Google Scholar 

  10. Kuhara T, Shinka T, Inoue Y, Zhen-Wei X, Ohse M, Yoshida I, Inokuchi T, Yamaguchi S, Takayanagi M, Matsumoto I (1999) Pilot study of gas chromatography-mass spectrometric screening of newborn urine for inborn errors of metabolism after treatment with urease. J Chromatogr B 731:141–147

    CAS  Google Scholar 

  11. Shinka T, Inoue Y, Peng H, Zhen-Wei X, Ohse M, Kuhara T (1999) Urine screening of five-day-old newborns: metabolic profiling of neonatal galactosuria. J Chromatogr B 732:469–477

    CAS  Google Scholar 

  12. Miyajima H, Orii KE, Shindo Y, Hashimoto T, Shinka T, Kuhara T, Matsumoto I, Shimizu H, Kaneko E (1997) Mitochondrial trifunctional protein deficiency associated with recurrent myoglobinuria in adolescence. Neurology 49:833–837

    PubMed  CAS  Google Scholar 

  13. Robinson BH (2001) Lactic acidemia: disorders of pyruvate carboxylase and pyruvate dehydrogenase. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 2275–2295

    Google Scholar 

  14. Mudd SH, Levy HL, Skovby F (1995) Disorders of transsulfuration In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 7th edn. McGraw-Hill, New York, pp 1279–1327

    Google Scholar 

  15. Rosenblatt DS (1995) Inherited disorders of folate transport and metabolism transsulfuration In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 7th edn. McGraw-Hill, New York, pp 3111–3128

    Google Scholar 

  16. Guenther BD, Sheppard CA, Tran P, Rozen R, Matthews RG, Ludwig ML (1999) The structure and properties of methylenetetrahydrofolate reductase from Escherichia coli suggest how folate ameliorates human hyperhomocysteinemia. Nat Struct Biol 6:359–365

    Article  PubMed  CAS  Google Scholar 

  17. Valevski AF, Bassan H, Korman SH, Lerman-Sagie T, Gutman A, Harel S (2000) Methylenetetrahydrofolate reductase deficiency: importance of early diagnosis. J Child Neurol 15:539–543

    Google Scholar 

  18. Fenton WA, Rosenberg LE (1995) Inherited disorders of cobalamin transport and metabolism Inherited disorders of folate transport and metabolism transsulfuration In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 7th edn. McGraw-Hill, New York, pp 3129–3149

    Google Scholar 

  19. Kuhara T, Ohse M, Ohdoi C, Ishida S (2000) Differential diagnosis of homocystinuria by urease-treatment, isotope-dilution and gas chromatography-mass spectrometry. J Chromatogr B 742:59–70

    CAS  Google Scholar 

  20. Simmonds HA, Fairbanks LD, Duley JA, Marinaki A (2000) Genetic disorders of purine and pyrimidine metabolism: problems of diagnosis. CPD Bull Clin Biochem 2:13–18

    Google Scholar 

  21. Simmonds HA, Duley JA, Davies PM (1991) Analysis of purines and pyrimidines in blood, urine, and other physiological fluids. In: Hommes FA (ed) Techniques in diagnostic human biochemical genetics. A laboratory manual. Wiley-Liss, New York, pp 397–424

    Google Scholar 

  22. Van Gennip AH, Van Noordenburg-Huistra DY, De Bree PK, Wadman SK (1978) Two-dimensional thin-layer chromatography for the screening of disorders of purine and pyrimidine metabolism. Clin Chim Acta 86:7–20

    Article  PubMed  Google Scholar 

  23. Friedecky D, Adam T, Bartak P (2002) Capillary electrophoresis for detection of inherited disorders of purine and pyrimidine metabolism: a selective approach. Electrophoresis 23:565–571

    Article  PubMed  CAS  Google Scholar 

  24. Christensen E, Brandt NJ, Laxdal T (1987) Adenine phosphoribosyltransferase deficiency: a case diagnosed by GC-MS identification of 2,8-dihydroxyadenine in urinary crystals. J Inher Metab Dis 10:187–194

    Article  PubMed  CAS  Google Scholar 

  25. Duran M, Dorland L, Meuleman EEE, Allers P, Berger R (1997) Inherited defects of purine and pyrimidine metabolism: laboratory methods for diagnosis. J Inher Metab Dis 20:227–236

    Article  PubMed  CAS  Google Scholar 

  26. Wevers RA, Engelke UF, Moolenaar SH, Brautigam C, De Jong JG, Duran R, De Abreu RA, Van Gennip AH (1999) 1H-NMR spectroscopy of body fluids: inborn errors of purine and pyrimidine metabolism. Clin Chem 45:539–548

    PubMed  CAS  Google Scholar 

  27. Van Gennip AH, Abeling NGGM, Vreken P, Van Kuilenburg AB (1997) Inborn errors of pyrimidine degradation: clinical, biochemical and molecular aspects. J Inher Metab Dis 20:203–213

    Article  PubMed  Google Scholar 

  28. Ito T, Van Kuilenburg AB, Bootsma AH, Haasnoot AJ, Van Cruchten A, Wada Y, Van Gennip AH (2000) Rapid screening of high-risk patients for disorders of purine and pyrimidine metabolism using HPLC-electrospray tandem mass spectrometry of liquid urine or urine-soaked filter paper strips. Clin Chem 46:445–452

    PubMed  CAS  Google Scholar 

  29. Van Lenthe H, Van Kuilenburg AB, Ito T, Bootsma AH, Van Cruchten A, Wada Y, Van Gennip AH (2000) Defects in pyrimidine degradation identified by HPLC-electrospray tandem mass spectrometry of urine specimens or urine-soaked filter paper strips. Clin Chem 46:1916–1922

    PubMed  Google Scholar 

  30. Webster DR, Becroft DMO, Van Gennip AH, Van Kuilenbury AB (2001) Hereditary orotic aciduria and other disorders of pyrimidine metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 2663–2702

    Google Scholar 

  31. Sumi S, Imaeda M, Kidouchi K, Ohba S, Hamajima N, Kodama K, Togari H, Wada Y (1998) Population and family studies of dihydropyrimidinuria: prevalence, inheritance mode, and risk of fluorouracil toxicity. Am J Med Genet 78:336–340

    Article  PubMed  CAS  Google Scholar 

  32. Wei X, Mcleod HL, McMurrough J, Gonzalez FJ, Fernandez-Salguero P (1996) Molecular basis of the human dihydropyrimidine dehydrogenase deficiency and 5-fluorouracil toxicity. J Clin Invest 98:610–615

    PubMed  CAS  Google Scholar 

  33. Van Kuilenburg AB, Vreken P, Beex LV, Meinsma R, Van Lenthe H, De Abreu RA, Van Gennip AH (1998) Heterozygosity for a point mutation in a invariant splice donor site of dihydropyrimidine dehydrogenase and severe 5-fluorouracil related toxicity. Adv Exp Med Biol 431:293–298

    PubMed  Google Scholar 

  34. Diasio RB, Beavers TL, Carpenter JT (1988) Familial deficiency of dihydropyrimidine dehydrogenase: biochemical basis for familial pyrimidinemia and sever 5-fluorouracil-induced toxicity. J Clin Invest 81:47–51

    Article  PubMed  CAS  Google Scholar 

  35. Heggie GD, Sommadossi JP, Cross DS, Huster WJ, Diasio RB (1987) Clinical pharmacokinetics of 5-fluorouracil and its metabolites in plasma, urine, and bile. Cancer Res 47:2203–2206

    PubMed  CAS  Google Scholar 

  36. Bakkeren JAJM, De Abreu RA, Sengers CA, Gabreels FJM, Maas JM, Renier WO (1984) Elevated urine, blood and cerebrospinal fluid levels of uracil and thymine in a child with dihydrothymine dehydrogenase deficiency. Clin Chim Acta 140:247–256

    Article  PubMed  CAS  Google Scholar 

  37. Duran M, Rovers P, De Bree PK, Schreuder CH, Beukenhorst H, Dorland L, Berger R (1991) Dihydropyrimidinuria: a new inborn error of pyrimidine metabolism. J Inher Metab Dis 14:367–370

    Article  PubMed  CAS  Google Scholar 

  38. Van Gennip AH, Abeling NG, Elzinga-Zoetekouw L, Scholten LG, Van Cruchten A, Bakker HD (1989) Comparative study of thymine and uracil metabolism in healthy persons and in a patient with dihydropyrimidine dehydrogenase deficiency. Adv Exp Med Biol 253:111–118

    Google Scholar 

  39. Ohba S, Kidouchi K, Katoh T, Kibe T, Kobayashi M, Wada Y (1991) Automated determination of orotic acid, uracil and pseudouridine in urine by high-performance liquid chromatography with column switching. J Chromatogr 568:325–332

    PubMed  CAS  Google Scholar 

  40. Van Gennip AH, Busch S, Elzinga L, Stroomer AE, Van Cruchten A, Scholten EG, Abeling NG (1993) Application of simple chromatographic methods for the diagnosis of defects in pyrimidine degradation. Clin Chem 39:380–385

    PubMed  Google Scholar 

  41. Wadman SK, Beemer FA, De Bree PK, Duran M, Van Gennip AH, Ketting D, Van Sprang FJ (1984) New defects of pyrimidine metabolism. Adv Exp Med Biol 165:109–114

    PubMed  Google Scholar 

  42. Kuhara T, Ohdoi C, Ohse M (2001) Simple gas chromatographic-mass spectrometric procedure for diagnosing pyrimidine degradation defects for prevention of severe anticancer side effects. J Chromatogr B 758:61–74

    CAS  Google Scholar 

  43. Kuhara T, Ohdoi C, Ohse M, Van Kuilenburg ABP, Van Gennip AH, Sumi S, Ito T, Wada Y, Matsumoto I (2003) Rapid gas chromatographic-mass spectrometric diagnosis of dihydropyrimidine dehydrogenase deficiency and dihydropyrimidinase deficiency. J Chromatogr B 792:107–115

    Article  CAS  Google Scholar 

  44. Ohse M, Matsuo M, Ishida A, Kuhara T (2002) Screening and diagnosis of β-ureidopropionase deficiency by gas chromatographic/mass spectrometric analysis of urine. J Mass Spectrom 37:954–962

    Article  PubMed  CAS  Google Scholar 

  45. Jinnah HA, Friedmann T (2001) Lesch-Nyhan disease and its variants. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 2537–2570

    Google Scholar 

  46. Nyhan WL (1997) The recognition of Lesch-Nyhan syndrome as an inborn error of purine metabolism. J Inher Metab Dis 20:171–178

    Article  PubMed  CAS  Google Scholar 

  47. Ohdoi C, Nyhan WL, Kuhara T (2003) Chemical diagnosis of Lesch-Nyhan syndrome using gas chromatography and mass spectrometric detection. J Chromatogr B 792:123–130

    Article  CAS  Google Scholar 

  48. Chamberlin BA, Sweeley CC (1987) Metabolic profiles of urinary organic acids recovered from absorbent filter paper. Clin Chem 33:572–576

    PubMed  CAS  Google Scholar 

  49. Tuchman M, Lemieux B, Auray-Blais C, Robinson LL, Giguere R, MacCann MT, Woods WG (1990) Screening for neuroblastoma at 3 weeks of age: methods and preliminary results from the Quebec Neuroblastoma Screening Project. Pediatrics 86:765–773

    PubMed  CAS  Google Scholar 

  50. Tuchman M, McCann MT, Johnson PE, Lemieux B (1991) Screening new-borns for multiple organic acidurias in dried filter paper urine samples: method development. Pediatr Res 30:315–321

    PubMed  CAS  Google Scholar 

  51. Hagen T, Korson MS, Sakamoto M, Evans JE (1999) A GC/MS/MS screening method for multiple organic acidemias from urine specimens. Clin Chim Acta 283:77–88

    Article  PubMed  CAS  Google Scholar 

  52. Millington DS, Norwood DL, Kodo N, Roe CR, Inoue F (1989) Application of fast atom bombardment with tandem mass spectrometry and liquid chromatography/mass spectrometry to the analysis of acylcarnitines in human urine, blood, and tissue. Anal Biochem 180:331–339

    Article  PubMed  CAS  Google Scholar 

  53. Chace DH, Millington DS, Terada N, Kahler SG, Roe CR, Hofman LF (1993) Rapid diagnosis of phenylketonuria by quantitative analysis for phenylalanine and tyrosine in neonatal blood spots by tandem mass spectrometry. Clin Chem 39:66–71

    PubMed  CAS  Google Scholar 

  54. Rashed MS, Ozand PT, Bucknall MP, Little D (1995) Diagnosis of inborn errors of metabolism from blood spots by acylcarnitines and amino acids profiling using automated electrospray tandem mass spectrometry. Pediatr Res 38:324–331

    PubMed  CAS  Google Scholar 

  55. Naylor EW, Chace DH (1999) Automated tandem mass spectrometry for mass newborn screening for disorders in fatty acid, organic acid, and amino acid metabolism. J Child Neurol 14:S4–S8

    PubMed  Google Scholar 

  56. Kuhara T, Ohse M, Inoue Y, Yorifuji T, Sakura N, Mitsubuchi H, Endo F, Ishimatu J (2002) Gas chromatographic-mass spectrometric newborn screening for propionic acidaemia by targeting methylcitrate in dried filter-paper urine samples. J Inher Metab Dis 25:98–106

    Article  PubMed  CAS  Google Scholar 

  57. Millington DS, Kodo N, Norwood DL, Roe CR (1990) Tandem mass spectrometry: a new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism. J Inher Metab Dis 13:321–324

    Article  PubMed  CAS  Google Scholar 

  58. Rashed MS, Bucknall MP, Little D, Awad A, Jacob M, Alamoudi M, Alwattar M, Ozand PT (1997) Screening blood spots for inborn errors of metabolism by electrospray tandem mass spectrometry with a microplate batch process and a computer algorithm for automated flagging of abnormal profiles. Clin Chem 43:1129–1141

    PubMed  CAS  Google Scholar 

  59. Naylor G, Sweetman L, Nyhan WL, Hornbeck C, Griffiths J, Morch L, Brandange S (1980) Isotope dilution analysis of methylcitric acid in amniotic fluid for the prenatal diagnosis of propionic and methylmalonic acidemia. Clin Chim Acta 107:175–183

    Article  PubMed  CAS  Google Scholar 

  60. Sweetman L (1984) Prenatal diagnosis of the organic acidurias. J Inher Metab Dis 7(suppl 1): 18–22

    Article  PubMed  Google Scholar 

  61. Fensom AH, Benson PF, Chalmers RA, Tracey BM, Watson D, King GS, Pettit BR, Rodeck CH (1984) Experience with prenatal diagnosis of propionic acidemia and methylmalonic aciduria. J Inher Metab Dis 7(suppl 2): 127–128

    PubMed  Google Scholar 

  62. Kretschmer RE, Bachmann C (1988) Methylcitric acid determination in amniotic fluid by electron-impact mass fragmentography. J Clin Chem Clin Biochem 26:345–348

    PubMed  CAS  Google Scholar 

  63. Holm J, Ponders L, Sweetman L (1989) Prenatal diagnosis of propionic and methylmalonic acidaemia by stable isotope dilution analysis of amniotic fluid. J Inher Metab Dis 12(suppl 2):271–273

    PubMed  Google Scholar 

  64. Jakobs C (1989) Prenatal diagnosis of inherited metabolic disorders by stable isotope dilution GC-MS analysis of metabolites in amniotic fluid: review of four years experience. J Inher Metab Dis 12(suppl 2):267–270

    PubMed  Google Scholar 

  65. Jakobs C, Ten Brink HJ, Stellaard F (1990) Prenatal diagnosis of inherited metabolic disorders by quantitation of characteristic metabolites in amniotic fluid: fact and future. Prenat Diagn 10:265–271

    PubMed  CAS  Google Scholar 

  66. Buchanan PD, Kahler SG, Sweetman L, Nyhan WL (1980) Pitfalls in the prenatal diagnosis of propionic acidemia. Clin Genet 18:177–183

    Article  PubMed  CAS  Google Scholar 

  67. Inoue Y, Kuhara T (2002) Rapid and sensitive method for prenatal diagnosis of propionic acidemia using stable isotope dilution gas chromatography-mass spectrometry and urease pretreatment. J Chromatogr B 776:71–77

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Kuhara, T. (2005). Chemical Diagnosis of Inborn Errors of Metabolism and Metabolome Analysis of Urine by Capillary Gas Chromatography/Mass Spectrometry. In: Tomita, M., Nishioka, T. (eds) Metabolomics. Springer, Tokyo. https://doi.org/10.1007/4-431-28055-3_12

Download citation

Publish with us

Policies and ethics