Skip to main content

Recent Advances in Molecular Pathobiology of Gastric Carcinoma

  • Chapter
The Diversity of Gastric Carcinoma

Conclusion

In the course of multistep carcinogenesis of the stomach, various alterations of oncogenes, tumor suppressor genes, DNA repair genes, growth factors/receptors, cell-cycle regulators, and cell adhesion molecules are accumulated. Some of these changes occur commonly in both well-differentiated and poorly differentiated types and some differ depending on the histological types. Among various epigenetic alterations, modified gene expression through DNA methylation and chromatin remodeling by histone modification are the most important events. Genetic polymorphism is a crucial endogenous cause and fundamental factor of cancer risk. Using genomic science including novel techniques for global analysis of gene expression and bioinformatics, the individual character of each person and cancer can be dissected precisely, which is directly connected to personalized medicine and cancer prevention. Understanding of the diversity of gastric cancer must be critical in the era of genomic medicine at the clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tahara E (1993) Molecular mechanism of stomach carcinogenesis. J Cancer Res Clin Oncol 119:265–272

    CAS  PubMed  Google Scholar 

  2. Yasui W, Oue N, Kuniyasu H, et al (2001) Molecular diagnosis of gastric cancer: present and future. Gastric Cancer 4:113–121

    Article  CAS  PubMed  Google Scholar 

  3. Ohgaki H, Yasui W, Yokota J (2003) Genetic pathway to human cancer. In: Vainio H, Hietanen E (eds) Handbook of experimental pharmacology. Mechanisms in carcinogenesis and cancer research. Springer, Heidelberg, pp 25–39

    Google Scholar 

  4. Yokozaki H, Yasui W, Tahara E (2001) Genetic and epigenetic changes in stomach cancer. Int Rev Cytol 204:49–95

    CAS  PubMed  Google Scholar 

  5. Yasui W, Oue N, Ono S, et al (2003) Histone acetylation and gastrointestinal carcinogenesis. Ann NY Acad Sci 983:220–231

    CAS  PubMed  Google Scholar 

  6. Todaro GJ, Huebner RJ (1972) N.A.S. symposium: new evidence as the basis for increased efforts in cancer research. Proc Natl Acad Sci U S A 69:1009–1015

    CAS  PubMed  Google Scholar 

  7. Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68:820–823

    PubMed  Google Scholar 

  8. Nakasato F, Sakamoto H, Mori M, et al (1984) Amplification of the c-myc oncogene in human stomach cancers. Gann (Jpn J Cancer Res) 75:737–742

    CAS  Google Scholar 

  9. Sakamoto H, Mori M, Taira M, et al (1986) Transforming gene from human stomach cancers and a noncancerous portion of stomach mucosa. Proc Natl Acad Sci U S A 83:3997–4001

    CAS  PubMed  Google Scholar 

  10. Yasui W, Yokozaki H, Shimamoto F, et al (1999) Molecular-pathological diagnosis of gastrointestinal tissues and its contribution to cancer histopathology. Pathol Int 49:763–774

    Article  CAS  PubMed  Google Scholar 

  11. Kim NW, Piatyszek MA, Prowse KR, et al (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015

    CAS  PubMed  Google Scholar 

  12. Yasui W, Tahara E, Tahara E, et al (1999) Immunohistochemical detection of human telomerase reverse transcriptase in normal and precancerous lesions of the stomach. Jpn J Cancer Res 90:589–595

    CAS  PubMed  Google Scholar 

  13. Kondo T, Oue N, Mitani Y, et al (2005) Loss of heterozygosity and histone hypoacetylation of the PINX1 gene are associated with reduced expression in gastric carcinoma. Oncogene 24:157–164

    Article  CAS  PubMed  Google Scholar 

  14. Kondo T, Oue N, Yoshida K, et al (2004) Expression of POT1 is associated with tumor stage and telomere length in gastric carcinoma. Cancer Res 64:523–529

    Article  CAS  PubMed  Google Scholar 

  15. Fleisher AS, Esteller M, Wang S, et al (1999) Hypermethylation of the hMLH1 promoter in human gastric cancers with microsatellite instability. Cancer Res 59:1090–1095

    CAS  PubMed  Google Scholar 

  16. Takahashi Y, Cleary KR, Mai M, et al (1996) Significance of vessel count and vascular endothelial growth factor and its receptor (KDR) in intestinal-type gastric cancer. Clin Cancer Res 2:1679–1684

    CAS  PubMed  Google Scholar 

  17. Kitadai Y, Haruma K, Sumii K, et al (1998) Expression of IL-8 correlates with vascularity in human gastric carcinomas. Am J Pathol 152:93–100

    CAS  PubMed  Google Scholar 

  18. Takahashi Y, Bucana CD, Akagi Y, et al (1998) Significance of platelet-derived endothelial cell growth factor in the angiogenesis of human gastric cancer. Clin Cancer Res 4:429–434

    CAS  PubMed  Google Scholar 

  19. Kitadai Y, Takahashi Y, Haruma K, et al (1999) Transfection of interleukin-8 increases angiogenesis and tumorigenesis of human gastric carcinoma cells in nude mice. Br J Cancer 81: 647–653

    Article  CAS  PubMed  Google Scholar 

  20. Kitadai Y, Haruma K, Mukaida N, et al (2000) Regulation of disease-progression genes in human gastric carcinoma cells by interleukin-8. Clin. Cancer Res 6:2735–2740

    CAS  PubMed  Google Scholar 

  21. Kitadai Y, Sasaki A, Ito M, et al (2003) Helicobacter pylori infection influences expression of genes related to angiogenesis and invasion in human gastric carcinoma cells. Biochem Biophys Res Commun 311:809–814

    Article  CAS  PubMed  Google Scholar 

  22. Tatematsu M, Tsukamoto T, Inada K (2003) Stem cells and gastric cancer: role of gastric and intestinal mixed intestinal metaplasia. Cancer Sci 94:135–141

    Article  CAS  PubMed  Google Scholar 

  23. Ohmura K, Tamura G, Endoh Y, et al (2000) Microsatellite alterations in differentiated-type adenocarcinomas and precancerous lesions of the stomach with special reference to cellular phenotype. Hum Pathol 31:1031–1035

    Article  CAS  PubMed  Google Scholar 

  24. Yokozaki H, Shitara Y, Fujimoto J, et al (1999) Alterations of p73 preferentially occur in gastric adenocarcinomas with foveolar epithelial phenotype. Int J Cancer 83:192–196

    Article  CAS  PubMed  Google Scholar 

  25. Almeida R, Silva E, Santos-Silva F, et al (2003) Expression of intestine-specific transcription factors, CDX1 and CDX2, in intestinal metaplasia and gastric carcinomas. J Pathol 199:36–40

    Article  PubMed  Google Scholar 

  26. Yamamoto H, Bai YQ, Yuasa Y (2003) Homeodomain protein CDX2 regulates goblet-specific MUC2 gene expression. Biochem Biophys Res Commun 300:813–818

    Article  CAS  PubMed  Google Scholar 

  27. Grotzinger C, Kneifel J, Patschan D, et al (2001) LI-cadherin: a marker of gastric metaplasia and neoplasia. Gut 49:73–81

    Article  CAS  PubMed  Google Scholar 

  28. Hippo Y, Taniguchi H, Tsutsumi S, et al (2002) Global gene expression analysis of gastric cancer by oligonucleotide microarrays. Cancer Res 62:233–240

    CAS  PubMed  Google Scholar 

  29. Yasui W, Oue N, Ito R, et al (2004) Search for new biomarkers of gastric cancer through serial analysis of gene expression and its clinical implications. Cancer Sci 95:385–392

    CAS  PubMed  Google Scholar 

  30. Hinoi T, Lucas PC, Kuick R, et al (2002) CDX2 regulates liver intestine-cadherin expression in normal and malignant colon epithelium and intestinal metaplasia. Gastroenterology 123: 1565–1577

    Article  CAS  PubMed  Google Scholar 

  31. Oshimo Y, Oue N, Mitani Y, et al (2004) Frequent loss of RUNX3 expression by promoter hypermethylation in gastric carcinoma. Pathobiology 71:137–143

    Article  CAS  PubMed  Google Scholar 

  32. Oue N, Shigeishi H, Kuniyasu H, et al (2001) Promoter methylation of MGMT is associated with protein loss in gastric carcinomas. Int J Cancer 93:805–809

    Article  CAS  PubMed  Google Scholar 

  33. Oue N, Matsumura S, Nakayama H, et al (2003) Expression of theTSP-1 gene and its association with promoter hypermethylation in gastric carcinomas. Oncology 64:423–429

    Article  CAS  PubMed  Google Scholar 

  34. Hamai Y, Oue N, Mitani Y, et al (2003) DNA methylation and histone acetylation status of HLTF gene are associated with reduced expression in gastric carcinoma. Cancer Sci 94:692–698

    Article  CAS  PubMed  Google Scholar 

  35. Oshimo Y, Oue N, Mitani Y, et al (2004) Frequent epigenetic inactivation of RIZ1 by promoter hypermethylation in human gastric carcinoma. Int J Cancer 110:212–218

    Article  CAS  PubMed  Google Scholar 

  36. Satoh A, Toyota M, Itoh F, et al (2003) Epigenetic inactivation of CHFR and sensitivity to microtubule inhibitors in gastric cancer. Cancer Res 63:8606–8613

    CAS  PubMed  Google Scholar 

  37. Toyota M, Ahuja N, Suzuki H, et al (1999) Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype. Cancer Res 59:5438–5442

    CAS  PubMed  Google Scholar 

  38. Kaneda A, Kaminishi M, Yanagihara K, et al (2002) Identification of silencing of nine genes in human gastric cancers. Cancer Res 62:6645–6650

    PubMed  Google Scholar 

  39. Oue N, Motoshita J, Yokozaki H, et al (2002) Distinct promoter hypermethylation of p16ink4a, CDH1, and RAR-beta in intestinal, diffuse-adherent, and diffuse-scattered type gastric carcinoma. J Pathol 198:55–59

    Article  CAS  PubMed  Google Scholar 

  40. Oue N, Oshimo Y, Mitani Y, et al (2003) DNA methylation of multiple genes in gastric carcinoma: association with histological type and CpG island methylator phenotype. Cancer Sci 94:901–905

    Article  CAS  PubMed  Google Scholar 

  41. Kang GH, Shim Y-H, Jung H-Y, et al (2001) CpG island methylation in premalignant stages of gastric carcinoma. Cancer Res 61:2847–2851

    CAS  PubMed  Google Scholar 

  42. Rhee I, Bachman KE, Park BH, et al (2002) DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature (Lond) 416:552–556

    Article  CAS  PubMed  Google Scholar 

  43. Robert M-F, Morin S, Beaulieu N, et al (2003) DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet 33:61–65

    Article  CAS  PubMed  Google Scholar 

  44. Kouzarides T (1999) Histone acetylases and deacetylases in cell proliferation. Curr Opin Genet Dev 9:40–48

    Article  CAS  PubMed  Google Scholar 

  45. Kouzarides T (2002) Histone methylation in transcriptional control. Curr Opin Genet Dev 12:198–209

    Article  CAS  PubMed  Google Scholar 

  46. Gonzalez CA, Sala N, Capella G (2002) Genetic susceptibility and gastric cancer risk. Int J Cancer 100:249–260

    CAS  PubMed  Google Scholar 

  47. Wu M-S, Huang S-P, Chang Y-T, et al (2002) Association of the — 160 C → A promoter polymorphism of the E-cadherin gene with gastric carcinoma risk. Cancer (Phila) 94:1443–1448

    CAS  Google Scholar 

  48. Pharoah PDP, Oliveira C, Machado JC, et al (2002) CDH1 c-160a promoter polymorphism is not associated with risk of stomach cancer. Int J Cancer 101:196–197

    Article  CAS  PubMed  Google Scholar 

  49. Watters JW, McLeod HL (2003) Cancer pharmacogenomics: current and future applications. Biochim Biophys Acta 1603:99–111

    CAS  PubMed  Google Scholar 

  50. El-Rifai W, Frierson HF Jr, Harper JC, et al (2001) Expression profiling of gastric adenocarcinoma using cDNA array. Int J Cancer 92:832–838

    Article  CAS  PubMed  Google Scholar 

  51. Hasegawa S, Furukawa Y, Li M, et al (2002) Genome-wide analysis of gene expression in intestinal-type gastric cancers using a complementary DNA microarray representing 23 040 genes. Cancer Res 62:7012–7017

    CAS  PubMed  Google Scholar 

  52. Inoue H, Matsuyama A, Mimori K, et al (2002) Prognostic score of gastric cancer determined by cDNA microarray. Clin Cancer Res 8:3475–3479

    CAS  PubMed  Google Scholar 

  53. Zembutsu H, Ohnishi Y, Tsunoda T, et al (2002) Genome-wide cDNA microarray screening to correlate gene expression profiles with sensitivity of 85 human cancer xenografts to anticancer drugs. Cancer Res 62:518–527

    CAS  PubMed  Google Scholar 

  54. Velculescu VE, Zhang L, Vogelstein B, et al (1995) Serial analysis of gene expression. Science 270:484–487

    CAS  PubMed  Google Scholar 

  55. El-Rafai W, Moskaluk CA, Abdrabbo MK, et al (2002) Gastric cancers overexpress S100A calcium-binding proteins. Cancer Res 62:6823–6826

    Google Scholar 

  56. Oien KA, Vass JK, Downie I, et al (2003) Profiling, comparison and validation of gene expression in gastric carcinoma and normal stomach. Oncogene 22:4287–4300

    Article  CAS  PubMed  Google Scholar 

  57. Lee J-Y, Eom E-M, Kim D-S, et al (2003) Analysis of gene expression profiles of gastric normal and cancer tissues by SAGE. Genomics 82:78–85

    Article  CAS  PubMed  Google Scholar 

  58. Oue N, Hamai Y, Mitani Y, et al (2004) Gene expression profile of gastric carcinoma; identification of genes and tags potentially involved in invasion, metastasis, and carcinogenesis by serial analysis of gene expression. Cancer Res 64:2397–2405

    Article  CAS  PubMed  Google Scholar 

  59. Hicks GG, Singh N, Nashabi A, et al (2000) Fus deficiency in mice results in defective B-lymphocyte development and activation, high levels of chromosomal instability and perinatal death. Nat Genet 24:175–179

    Article  CAS  PubMed  Google Scholar 

  60. Hartupee JC, Zhang H, Bonaldo MF, et al (2001) Isolation and characterization of a cDNA encoding a novel member of the human generating protein family. Biochim Biophys Acta 1518:287–293

    CAS  PubMed  Google Scholar 

  61. Zhang X, Huang Q, Yang Z, et al (2004) GW112, a novel antiapoptotic protein that promotes tumor growth. Cancer Res 64:2474–2481

    CAS  PubMed  Google Scholar 

  62. Krupnik VE, Sharp JD, Jiang C, et al (1999) Functional and structural diversity of the human Dickkopf gene family. Gene (Amst) 238:301–313

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Yasui, W., Oue, N., Kitadai, Y., Nakayama, H. (2005). Recent Advances in Molecular Pathobiology of Gastric Carcinoma. In: Kaminishi, M., Takubo, K., Mafune, Ki. (eds) The Diversity of Gastric Carcinoma. Springer, Tokyo. https://doi.org/10.1007/4-431-27713-7_3

Download citation

  • DOI: https://doi.org/10.1007/4-431-27713-7_3

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-21139-6

  • Online ISBN: 978-4-431-27713-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics