Skip to main content

The Role of p50 in Tissue Oxygen Delivery by Cell-Free Oxygen Carriers

  • Conference paper
Book cover Artificial Oxygen Carrier

Part of the book series: Keio University International Symposia for Life Sciences and Medicine ((KEIO,volume 12))

  • 733 Accesses

Summary

The concept that the p50 of a cell-free O2 carrier (“blood substitute”) should approximate that of human blood is rooted in the assumption that the p50 is an important determinant of O2 delivery. This assumption is based on antiquated measurements in subjects exposed to hypoxia, for whom a theory was developed that an increase in red cell 2,3-DPG shifts the oxygen equilibrium curve to the right (high p50, low O2 affinity), thereby providing “adaptation” to hypoxia. This concept has been carried over to efforts to pharmacologically raise the p50 of human red cells and to preserve 2,3-DPG concentration in banked blood. More recent measurements in high altitude natives demonstrate that such a right-shift is not critical to adaptation; in fact, a left shift is probably essential to maintain arterial saturation at extreme altitude. Furthermore, evidence of therapeutic benefit from increasing p50 in humans is scant. In the case of cell-free hemoglobin, the mechanisms of O2 transfer to tissue are completely different, such that unless p50 is significantly reduced, O2 oversupply will result, engaging autoregulatory mechanisms that leads to vasoconstriction. A second generation of O2 carriers has been designed with increased O2 affinity, and the suggestion is made that the optimal p50 for cell-free hemoglobin should be approximately that of the target tissue for oxygenation. In the case of highly metabolic tissue such as the myocardium or exercising skeletal muscle, this is in the range of 3–5 mmHg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Winslow RM, Swenberg M, Berger R, et al (1977) Oxygen equilibrium curve of normal human blood and its evaluation by Adair’s equation. J Biol Chem 252: 2331–2337

    CAS  PubMed  Google Scholar 

  2. Bolton W, Perutz M (1970) Three dimensional fourier synthesis of horse deoxyhemoglobin at 2 Angstrom units resolution. Nature 228:551–552

    Article  CAS  PubMed  Google Scholar 

  3. Winslow R (1992) Hemoglobin-based red cell substitutes. Johns Hopkins University Press, Baltimore

    Google Scholar 

  4. Intaglietta M, Johnson P, Winslow R (1996) Microvascular and tissue oxygen distribution. Cardiovasc Res 32:632–643

    Article  CAS  PubMed  Google Scholar 

  5. Winslow RM, Monge CC (1987) Hypoxia, polycythemia and chronic mountain sickness. Johns Hopkins University Press, Baltimore

    Google Scholar 

  6. Winslow R, Morrissey J, Berger R (1978) Variability of oxygen affinity or normal blood: an automated method of measurement. J Appl Physiol 45:289–297

    CAS  PubMed  Google Scholar 

  7. Barcroft J, Binger C, Bock A, et al (1923) Observations upon the effect of high altitude on the physiological processes of the human body carried out in the Peruvian Andes chiefly at Cerro de Pasco. Philos Trans R Soc Lond S Biol Sci 211:351–480

    Google Scholar 

  8. Hurtado A (1964) Animals in high altitudes: resident man, Sect. 4, Ch. 54. Washington, D.C.: Am Physiol Soc

    Google Scholar 

  9. Winslow RM, Morrissey JM, Berger RL, et al (1978) Variability of oxygen affinity or normal blood: an automated method of measurement. J Appl Physiol 45:289–297

    CAS  PubMed  Google Scholar 

  10. Winslow R, Monge C, Statham N, et al (1981) Variability of oxygen affinity of blood: human subjects native to high altitude. J Appl Physiol 51:1411–1416

    CAS  PubMed  Google Scholar 

  11. Winslow R, Monge C, Brown E, et al (1985) The effects of hemodilution on O2 transport in high altitude polycythemia. J Appl Physiol 59:1495–1502

    CAS  PubMed  Google Scholar 

  12. Winslow R, Samaja M, West J (1984) Red cell function at extreme altitude on Mount Everest. J Appl Physiol 56(1):109–116

    CAS  PubMed  Google Scholar 

  13. Charache S, Weatherall D, Clegg J (1966) Polycythemia associated with a hemoglobinopathy. J Clin Invest 45:813

    CAS  PubMed  Google Scholar 

  14. Winslow RM, Swenberg M-L, Gross E, et al (1976) Hemoglobin McKees Rocks (α2β2145Tyr->Term). A human “nonsense” mutation leading to a shortened b-chain. J Clin Invest 57:772–781

    CAS  PubMed  Google Scholar 

  15. Charache S, Jacobson R, Brimhall B, et al (1978) Hb Potomac (101 Glu replaced by Asp): speculations on placental oxygen transport in carriers of high-affinity hemoglobins. Blood 51:331–338

    CAS  PubMed  Google Scholar 

  16. Eaton J, Skelton T, Berger E (1974) Survival at extreme altitude: protective effect of increased hemoglobin-oxygen affinity. Science 185:743–744

    Google Scholar 

  17. Hebbel R, Eaton J, Kronenberg R, et al (1978) Human llamas. Adaptation to altitude in subjects with high hemoglobin oxygen affinity. J Clin Invest 62:593–600

    CAS  PubMed  Google Scholar 

  18. Monge CC, Leon-Velarde F (1991) Physiological adatation to high altitude: oxygen transport in mammals and birds. Physiol Rev 71:1135–1172

    CAS  PubMed  Google Scholar 

  19. Gersonde K, Nicolau C (1980) Modification of the oxygen affinity of intracellular haemoglobin by incorporation of polyphosphates into intact red blood cell enhanced O2 release in the capillary system. Biblthca Haemat 46:81–92

    Google Scholar 

  20. Kunert M, Liard J, Lombard J, et al (1995) Low affinity hemoglobin increases tissue PO2 and decreases arteriolar diameter and flow in the rat cremaster muscle. Microcirculation 23 (Abstract)

    Google Scholar 

  21. Lalezari I, Lalezari P, Poyart C (1990) New effectors of human hemoglobin: structure and function. Biochemistry 29:1515–1523

    Article  CAS  PubMed  Google Scholar 

  22. Malmberg P, Hlastala M, Woodson R (1979) Effect of increased blood-oxygen affinity on oxygen transport in hemorrhagic shock. J Appl Physiol 47:889–895

    CAS  PubMed  Google Scholar 

  23. Woodson R, Wranne B, Detter J (1973) Effect of increased blood oxygen affinity on work performance of rats. J Clin Invest 52:2717–2724

    CAS  PubMed  Google Scholar 

  24. Randad R, Mahran M, Mehanna A, et al (1991) Allosteric modifiers of hemoglobin. 1. Design, synthesis, testing, and structure-allosteric activity relationship of novel affin decreasing agents. J Med Chem 34:752–757

    Article  CAS  PubMed  Google Scholar 

  25. Wireko F, Kellogg G, Abraham D (1991) Allosteric modifiers of hemoglobin. 2. Crystallographically determined binding sites and hydrophobic binding/interaction analysis of novel hemoglobin oxygen effectors. J Med Chem 34:758–767

    Article  CAS  PubMed  Google Scholar 

  26. Benesch R, Benesch R (1967) The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. BBRC 26:162–167

    CAS  PubMed  Google Scholar 

  27. Chanutin A, Curnish RR (1967) Effect of organic and inorganic phosphates on the oxygen equilibrium curve of human erythrocyte. Arch Biochem Biophys 121:96–102

    Article  CAS  PubMed  Google Scholar 

  28. Beutler E, Wood L (1969) The in vivo regeneration of red cell 2,3-diohosphoglyceric acit (DPG) after transfusion of stored blood. J Lab Clin Med 74(2):300–304

    CAS  PubMed  Google Scholar 

  29. Lenfant C, Sullivan K (1971) Adaptation to high altitude. N Engl J Med 284(23): 1298–1309

    CAS  PubMed  Google Scholar 

  30. Collins J, Stechenberg L (1973) The effects of the concentration and function ofhemoglobin on the survival of rats after hemorrhage. Surgery 85(4):412–418

    Google Scholar 

  31. Hartridge H, Roughton F (1927) The rate of distribution of dissolved gases between the red blood corpuscle and its fluid environment. J Physiol (Lond) 62:232–242

    CAS  Google Scholar 

  32. Kavdia M, Pittman R, Popel A (2002) Theoretical analysis of effects of blood substitute affinity and cooperativity on organ oxygen transport. J Appl Physiol 93: 2122–2128

    CAS  PubMed  Google Scholar 

  33. Page TC, Light WR, McKay CB, et al (1998) Oxygen transport by erythrocyte/hemoglobin solution mixtures in an in vitro capillary as a model of hemoglobin-based oxygen carrier performance. Microvasc Res 55:54–64

    Article  CAS  PubMed  Google Scholar 

  34. Federspiel WJ, Popel AS (1986) A theoretical analysis of the effect of the particulate nature of blood on oxygen release in capillaries. Microvascular Research 32:164–189

    Article  CAS  PubMed  Google Scholar 

  35. Homer L, Weathersby P, Kiesow L (1981) Oxygen gradients between red blood cells in the microcirculation. Microvasc Res 22:308–323

    Article  CAS  PubMed  Google Scholar 

  36. Vandegriff K, Winslow R (1995) A theoretical analysis of oxygen transport: a new strategy for the design of hemoglobin-based red cell substitutes. In: Intaglietta M (ed) Blood substitutes. Physiological basis of efficacy. Birkhäuser, New York, pp 143–154

    Google Scholar 

  37. Lindbom L, Tuma R, Arfors K (1980) Influence of oxygen on perfused capillary density and capillary red cell velocity in rabbit skeletal muscle. Microvasc Res 19:197–208

    Article  CAS  PubMed  Google Scholar 

  38. Tsai A, Cabrales P, Winslow R, et al (2003) Microvascular oxygen distribution in the awake hamster window chamber model during hyperoxia. Am J Physiol 285:H1537–H1545

    CAS  Google Scholar 

  39. Winslow RM, Vandegriff KD (1997) Hemoglobin oxygen affinity and the design of red cell substitutes. In: Winslow RM, Vandegriff KD, Intaglietta M (eds) Advances in blood substitutes. Industrial opportunities and medical challenges. Birkhäuser, Boston, pp 167–188

    Google Scholar 

  40. Wittenberg J (1970) Myoglobin-facilitated oxygen diffusion: role of myoglobin in oxygen entry into muscle. Physiol Rev 50(4):559–636

    CAS  PubMed  Google Scholar 

  41. Scholander P (1960) Oxygen transport through hemoglobin solutions. Science 131: 585–590

    CAS  PubMed  Google Scholar 

  42. Tsai A, Vandegriff KD, Intaglietta M, et al (2003) Targeted O2 delivery by cell-free hemoglobin: a new basis for oxygen therapeutics. Am J Physiol Heart Circ Physiol 285: H1411–H1419

    CAS  PubMed  Google Scholar 

  43. McCarthy MR, Vandegriff KD, Winslow RM (2001) The role of facilitated diffusion in oxygen transport by cell-free hemoglobin: implications for the design of hemoglobin-based oxygen carriers. Biophys Chem 92:103–117

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Tokyo

About this paper

Cite this paper

Winslow, R.M. (2005). The Role of p50 in Tissue Oxygen Delivery by Cell-Free Oxygen Carriers. In: Kobayashi, K., Tsuchida, E., Horinouchi, H. (eds) Artificial Oxygen Carrier. Keio University International Symposia for Life Sciences and Medicine, vol 12. Springer, Tokyo. https://doi.org/10.1007/4-431-26651-8_4

Download citation

  • DOI: https://doi.org/10.1007/4-431-26651-8_4

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-22074-9

  • Online ISBN: 978-4-431-26651-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics