Skip to main content

Ni-Catalyzed Synthesis of Acrylic Acid Derivatives from CO2 and Ethylene

  • Chapter
  • First Online:

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 53))

Abstract

The story of nickelalactones finally ends well. Over three decades after their discovery, catalytic processes have been successfully established to synthesize acrylate derivatives from ethylene and abundantly available carbon dioxide. The performed research during this time in the CO2 utilization via C–C bond formation with olefins is presented within this review. It gives detailed insights starting from the initial milestones in the 1980s up to modern strategies through cleavage auxiliaries. Different approaches are examined from an experimental and theoretical point of view as the choice of cleavage agent and the corresponding ligand is crucial for the reaction control and suppression of undesired pathways. Methylation of the lactone species led to a first successful liberation of methyl acrylate in stoichiometric amounts. These results led to a vast progress in research with auxiliaries afterward. Upon addition of Lewis acids or strong sodium bases, finally the first two different catalytic routes have been established which are discussed in detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ArF :

3,5-Bis(trifluoromethyl)phenyl

bpy:

2,2′-Bipyridine

BenzP*:

(R,R)-(+)-1,2-Bis(tert-butylmethylposphino)benzene

BTPP:

(tert-Butylimino)tris(pyrrolidino)phosphorane

cdt:

1,5,9-Cyclododecatriene

cod:

1,5-Cyclooctadiene

Cy:

Cyclohexyl

dcpe:

1,2-Bis(dicyclohexylphosphino)ethane

dcpp:

1,3-Bis(dicyclohexylphosphino)propane

dippf:

1,1′-Bis(di-iso-propylphosphanyl)ferrocene

dppb:

1,4-Bis(diphenylphosphino)butane

dppe:

1,2-Bis(diphenylphosphino)ethane

dppf:

1,1′-Bis(diphenylphosphanyl)ferrocene

dppm:

Bis(diphenylphosphino)methane

dppp:

1,3-Bis(diphenylphosphino)propane

dtbpe:

1,2-Bis(di-tert-butylphosphino)ethane

dtbpm:

Bis(di-tert-butylphosphino)methane

dtbpp:

1,3-Bis(di-tert-butylphosphino)propane

DBU:

1,8-Diazabicyclo[5.4.0]undec-7-ene

DFT:

Density functional theory

DIPEA:

N,N-Di-iso-propylethylamine

IR:

Infrared

L:

Ligand

Lac:

2-Oxacyclopentan-3-one

MMA:

Methyl methacrylate

NMR:

Nuclear magnetic resonance

p.a.:

Per year

PAA:

Poly(acrylic acid)

PANa:

Sodium poly(acrylate)

PMMA:

Poly(methyl methacrylate)

rt:

Room temperature

thf:

Tetrahydrofuran

tmeda:

N,N,N′,N′-Tetramethylethylenediamine

TOF:

Turnover frequency

TON:

Turnover number

References

  1. Behr A, Agar W, Joerissen J (2010) Einführung in die Technische Chemie. Spektrum Akademischer Verlag, Heidelberg

    Book  Google Scholar 

  2. Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114(3):1709–1742. doi:10.1021/cr4002758

    Article  CAS  Google Scholar 

  3. Lejkowski ML, Lindner R, Kageyama T, Bódizs GÉ, Plessow PN, Müller IB, Schäfer A, Rominger F, Hofmann P, Futter C, Schunk SA, Limbach M (2012) The first catalytic synthesis of an acrylate from CO2 and an alkene—a rational approach. Chem Eur J 18(44):14017–14025. doi:10.1002/chem.201201757

    Article  CAS  Google Scholar 

  4. Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kühn FE (2011) Transformation of carbon dioxide with homogeneous transition-metal catalysts: a molecular solution to a global challenge? Angew Chem Int Ed 50(37):8510–8537. doi:10.1002/anie.201102010

    Article  CAS  Google Scholar 

  5. Hoberg H, Schaefer D (1983) Nickel(0)-induced C-C bonding between carbon dioxide and ethylene as well as monosubstituted and disubstituted alkenes. J Organomet Chem 251(3):C51–C53. doi:10.1016/s0022-328x(00)98789-8

    Article  CAS  Google Scholar 

  6. Hoberg H, Schaefer D, Burkhart G, Krüger C, Romão MJ (1984) Nickel(0)-induzierte C–C-verknüpfung zwischen kohlendioxid und alkinen sowie alkenen. J Organomet Chem 266(2):203–224. doi:10.1016/0022-328X(84)80129-1

    Article  CAS  Google Scholar 

  7. Fischer R, Langer J, Malassa A, Walther D, Gorls H, Vaughan G (2006) A key step in the formation of acrylic acid from CO2 and ethylene: the transformation of a nickelalactone into a nickel-acrylate complex. Chem Commun 23:2510–2512

    Article  Google Scholar 

  8. Yamamoto T, Igarashi K, Komiya S, Yamamoto A (1980) Preparation and properties of phosphine complexes of nickel-containing cyclic amides and esters [(PR3)nNiCH2CH(R1)COZ (Z = NR2, O)]. J Am Chem Soc 102(25):7448–7456. doi:10.1021/ja00545a009

    Article  CAS  Google Scholar 

  9. Burkhart G, Hoberg H (1982) Oxanickelacyclopentene derivatives from nickel(0), carbon-dioxide, and alkynes. Angew Chem Int Ed 21(1):76. doi:10.1002/anie.198200762

    Article  Google Scholar 

  10. Hoberg H, Schaefer D (1982) Model complexes of nickel for the 2 + 2 + 2′-cycloaddition of alkynes with carbon-dioxide. J Organomet Chem 238(4):383–387. doi:10.1016/s0022-328x(00)83800-0

    Article  CAS  Google Scholar 

  11. Hoberg H, Apotecher B (1984) Alpha, omega-diacids from butadiene and carbon-dioxide on nickel(0). J Organomet Chem 270(1):C15–C17. doi:10.1016/0022-328x(84)80346-0

    Article  CAS  Google Scholar 

  12. Hoberg H, Schaefer D (1983) Sorbic acid from piperylene and CO2 through C-C coupling on nickel. J Organomet Chem 255(1):C15–C17. doi:10.1016/0022-328x(83)80185-5

    Article  CAS  Google Scholar 

  13. Hoberg H, Oster BW (1984) Nickel(0)-induced C-C bonding between 1,2-dienes and carbon-dioxide. J Organomet Chem 266(3):321–326. doi:10.1016/0022-328x(84)80145-x

    Article  CAS  Google Scholar 

  14. Hoberg H, Schaefer D (1982) Nickel(0) induced C-C linkage between alkenes and carbon-dioxide. J Organomet Chem 236(1):C28–C30. doi:10.1016/s0022-328x(00)86765-0

    Article  CAS  Google Scholar 

  15. Hoberg H, Ballesteros A (1991) Ni0-induzierte Herstellung cyclischer C8-Carbonsäuren aus Cyclooctenen und Kohlendioxid. J Organomet Chem 411(1–2):C11–C18. doi:10.1016/0022-328x(91)86033-m

    Article  CAS  Google Scholar 

  16. Hoberg H, Ballesteros A, Sigan A, Jegat C, Milchereit A (1991) Durch (Lig)Ni(0) induzierte Herstellung von mono- und di-Carbonsäuren aus Cyclopenten und Kohlendioxid. Synthesis 1991(05):395,398. doi:10.1055/s-1991-26475

  17. Hoberg H, Barhausen D (1989) Nickel(0)-induced CC coupling of CO2 with 1,3-butadiene for preparing linear C-13-acids. J Organomet Chem 379(1–2):C7–C11. doi:10.1016/0022-328x(89)80043-9

    Article  CAS  Google Scholar 

  18. Hoberg H, Gross S, Milchereit A (1987) Nickel(0)-catalyzed production of a functionalized cyclopentanecarboxylic acid from 1,3-butadiene and CO2. Angew Chem Int Ed 26(6):571–572. doi:10.1002/anie.198705711

    Article  Google Scholar 

  19. Hoberg H, Schaefer D, Oster BW (1984) Diene carboxylic-acid from 1,3-dienes and CO2 through C-C bonding on nickel. J Organomet Chem 266(3):313–320. doi:10.1016/0022-328x(84)80144-8

    Article  CAS  Google Scholar 

  20. Fischer R, Walther D, Braunlich G, Undeutsch B, Ludwig W, Bandmann H (1992) Nickelalactone als Synthesebausteine: Sonochemische und Bimetallaktivierung der Kreuzkopplungsreaktion mit Alkyl-halogeniden. J Organomet Chem 427(3):395–407. doi:10.1016/0022-328x(92)80077-b

    Article  CAS  Google Scholar 

  21. Hoberg H, Peres Y, Milchereit A (1986) C-C coupling of alkenes with Co2 in nickel(0) - production Of cinnamic acid in styrene. J Organomet Chem 307(2):C38–C40. doi:10.1016/0022-328x(86)80487-9

    Article  CAS  Google Scholar 

  22. Hoberg H, Summermann K, Milchereit A (1985) CC bond formation of alkenes with isocyanates on NI-0 complexes - a new synthesis of acrylamides. Angew Chem Int Ed 24(4):325–326

    Google Scholar 

  23. Hoberg H, Summermann K, Milchereit A (1985) C-C bond forming of alkenes with isocyanates on nickel(0). J Organomet Chem 288(2):237–248. doi:10.1016/0022-328x(85)87282-x

    Article  CAS  Google Scholar 

  24. Hoberg H, Hernandez E (1985) Nickel(0)-catalyzed synthesis of sorbanilide from 1,3-pentadiene and phenyl isocyanate. Angew Chem Int Ed 24(11):961–962. doi:10.1002/anie.198509611

    Article  Google Scholar 

  25. Hoberg H, Summermann K (1983) Diazanickelacyclopentanones synthesized from nickel(0), imines and isocyanates. J Organomet Chem 253(3):383–389. doi:10.1016/s0022-328x(00)99233-7

    Article  CAS  Google Scholar 

  26. Hoberg H, Summermann K (1984) Nickel(0) catalyzed synthesis of imines from isocyanates and aldehydes. Z Naturforsch B 39(8):1032–1036

    Article  Google Scholar 

  27. Hoberg H, Summermann K (1984) Nickel(0)-induced couples of benzaldehyde with isocyanates in nickel heterocycles. J Organomet Chem 264(3):379–385. doi:10.1016/0022-328x(84)85082-2

    Article  CAS  Google Scholar 

  28. Hoberg H, Nohlen M (1991) Ni(O)-induced CC coupling of phenylisocyanate with cyclic 5-membered alkenes, catalytic preparation of beta, gamma-unsaturated carboxylic-acid anilides. J Organomet Chem 412(1–2):225–236. doi:10.1016/0022-328x(91)86057-w

    Article  CAS  Google Scholar 

  29. Hoberg H, Hernandez E (1986) Intermolecular C-C bond-formation of azanickelacyclopentanone alpha, omega-diacid amides from alkenes and phenyl isocyanate. J Organomet Chem 311(3):307–312. doi:10.1016/0022-328x(86)80252-2

    Article  CAS  Google Scholar 

  30. Kaiser J, Sieler J, Braun U, Golič L, Dinjus E, Walther D (1982) Aktivierung von Kohlendioxid an Übergangsmetallzentren: Kristall- und molekulstruktur von 2,2′-dipyridyl-nickela-5-methyl-2,4-dioxolan-3-on, einem Kopplungsprodukt von Kohlendioxid und Acetaldehyd am Zentralatom Nickel (0). J Organomet Chem 224(1):81–87. doi:10.1016/S0022-328X(00)82569-3

    Article  CAS  Google Scholar 

  31. Walther D, Dinjus E, Sieler J, Kaiser J, Lindqvist O, Anderson L (1982) Aktivierung von kohlendioxid an übergangsmetallzentren: nickela(II)-heterocyclen aus kohlendioxid und azaolefinen am elektronenreichen nickel(0)-komplexrumpf. J Organomet Chem 240(3):289–297. doi:10.1016/S0022-328X(00)86795-9

    Article  CAS  Google Scholar 

  32. Yamamoto T, Sano K, Yamamoto A (1987) Effect of ligand on ring contraction of six-membered nickel-containing cyclic esters, LnNiCH2CH2CH2COO, to their five-membered-ring isomers, LnNiCH(CH3)CH2COO. Kinetic and thermodynamic control of asymmetric induction by chiral diphosphines in the ring contraction. J Am Chem Soc 109(4):1092–1100. doi:10.1021/ja00238a017

    Article  CAS  Google Scholar 

  33. Hoberg H, Peres Y, Milchereit A (1986) C-C coupling of alkenes with CO2 in nickel(0) - N-pentanoic acids in ethene. J Organomet Chem 307(2):C41–C43. doi:10.1016/0022-328x(86)80488-0

    Article  CAS  Google Scholar 

  34. Hoberg H, Peres Y, Krüger C, Tsay Y-H (1987) A 1-oxa-2-nickela-5-cyclopentanone from ethene and carbon dioxide: preparation, structure, and reactivity. Angew Chem Int Ed 26(8):771–773. doi:10.1002/anie.198707711

    Article  Google Scholar 

  35. Hoberg H, Jenni K, Angermund K, Krüger C (1987) C–C-linkages of ethene with CO2 on an iron(0) complex—synthesis and crystal structure analysis of [(PEt3)2Fe(C2H4)2]. Angew Chem Int Ed 26(2):153–155. doi:10.1002/anie.198701531

    Article  Google Scholar 

  36. Hoberg H, Jenni K, Kruger C, Raabe E (1986) CC coupling of CO2 and butadiene on iron(0) complexes - a novel route to alpha-omega-dicarboxylic acids. Angew Chem Int Ed 25(9):810–811. doi:10.1002/anie.198608101

    Article  Google Scholar 

  37. Osakada K, Doh MK, Ozawa F, Yamamoto A (1990) Catalytic and stoichiometric carbonylation of beta, gamma-unsaturated carboxylic acids to give cyclic anhydrides through intermediate palladium-containing cyclic esters. Organometallics 9(8):2197–2198. doi:10.1021/om00158a010

    Article  CAS  Google Scholar 

  38. Aresta M, Pastore C, Giannoccaro P, Kovács G, Dibenedetto A, Pápai I (2007) Evidence for spontaneous release of acrylates from a transition-metal complex upon coupling ethene or propene with a carboxylic moiety or CO2. Chem Eur J 13(32):9028–9034. doi:10.1002/chem.200700532

    Article  CAS  Google Scholar 

  39. Yamamoto T, Sano K, Osakada K, Komiya S, Yamamoto A, Kushi Y, Tada T (1990) Comparative studies on reactions of alpha, beta- and beta, gamma-unsaturated amides and acids with nickel(0), palladium(0), and platinum(0) complexes. Preparation of new five- and six-membered nickel- and palladium-containing cyclic amide and ester complexes. Organometallics 9(8):2396–2403. doi:10.1021/om00158a041

    Article  CAS  Google Scholar 

  40. Aye KT, Colpitts D, Ferguson G, Puddephatt RJ (1988) Activation of a.beta.-lactone by oxidative addition and the structure of a platina(IV)lactone. Organometallics 7(6):1454–1456. doi:10.1021/om00096a039

    Article  CAS  Google Scholar 

  41. Cohen SA, Bercaw JE (1985) Titanacycles derived from reductive coupling of nitriles, alkynes, acetaldehyde, and carbon dioxide with bis(pentamethylcyclopentadienyl)(ethylene)titanium(II). Organometallics 4(6):1006–1014. doi:10.1021/om00125a008

    Article  CAS  Google Scholar 

  42. Burlakov VV, Arndt P, Baumann W, Spannenberg A, Rosenthal U (2006) Simple functionalizations of pentamethylcyclopentadienyl ligands by reactions of decamethylzirconocene complexes with carbon dioxide. Organometallics 25(5):1317–1320. doi:10.1021/om051063z

    Article  CAS  Google Scholar 

  43. Aresta M, Quaranta E (1993) Synthesis, characterization and reactivity of [Rh(bpy)(C2H4)Cl]. A study on the reaction with C1 molecules (CH2O, CO2) and NaBPh4. J Organomet Chem 463(1–2):215–221. doi:10.1016/0022-328x(93)83420-z

    Article  CAS  Google Scholar 

  44. Alvarez R, Carmona E, Cole-Hamilton DJ, Galindo A, Gutierrez-Puebla E, Monge A, Poveda ML, Ruiz C (1985) Formation of acrylic acid derivatives from the reaction of carbon dioxide with ethylene complexes of molybdenum and tungsten. J Am Chem Soc 107(19):5529–5531. doi:10.1021/ja00305a037

    Article  CAS  Google Scholar 

  45. Alvarez R, Carmona E, Galindo A, Gutierrez E, Marin JM, Monge A, Poveda ML, Ruiz C, Savariault JM (1989) Formation of carboxylate complexes from the reactions of carbon dioxide with ethylene complexes of molybdenum and tungsten. X-ray and neutron diffraction studies. Organometallics 8(10):2430–2439. doi:10.1021/om00112a026

    Article  CAS  Google Scholar 

  46. Langer J, Fischer R, Görls H, Walther D (2007) Low-valent nickel and palladium complexes with 1,1′-Bis(phosphanyl)ferrocenes: syntheses and structures of acrylic acid and ethylene complexes. Eur J Inorg Chem 2007(16):2257–2264. doi:10.1002/ejic.200601051

    Article  Google Scholar 

  47. Graham DC, Mitchell C, Bruce MI, Metha GF, Bowie JH, Buntine MA (2007) Production of acrylic acid through nickel-mediated coupling of ethylene and carbon dioxide—a DFT study. Organometallics 26(27):6784–6792. doi:10.1021/om700592w

    Article  CAS  Google Scholar 

  48. Bruckmeier C, Lehenmeier MW, Reichardt R, Vagin S, Rieger B (2010) Formation of methyl acrylate from CO2 and ethylene via methylation of nickelalactones. Organometallics 29(10):2199–2202. doi:10.1021/om100060y

    Article  CAS  Google Scholar 

  49. Kakino R, Nagayama K, Kayaki Y, Shimizu I, Yamamoto A (1999) Formation of a palladalactone complex by C–O bond cleavage of diketene promoted by a zerovalent palladium complex. Chem Lett 28(7):685–686

    Article  Google Scholar 

  50. Plessow PN, Weigel L, Lindner R, Schäfer A, Rominger F, Limbach M, Hofmann P (2013) Mechanistic details of the nickel-mediated formation of acrylates from CO2, ethylene and methyl iodide. Organometallics 32(11):3327–3338. doi:10.1021/om400262b

    Article  CAS  Google Scholar 

  51. Lee SYT, Cokoja M, Drees M, Li Y, Mink J, Herrmann WA, Kühn FE (2011) Transformation of nickelalactones to methyl acrylate: on the way to a catalytic conversion of carbon dioxide. ChemSusChem 4(9):1275–1279. doi:10.1002/cssc.201000445

    Article  CAS  Google Scholar 

  52. Lee SYT, Ghani AA, D’Elia V, Cokoja M, Herrmann WA, Basset J-M, Kuhn FE (2013) Liberation of methyl acrylate from metallalactone complexes via M-O ring opening (M = Ni, Pd) with methylation agents. New J Chem. doi:10.1039/c3nj00693j

    Google Scholar 

  53. Hoberg H, Ballesteros A, Sigan A, Jégat C, Bärhausen D, Milchereit A (1991) Ligandgesteuerte Ringkontraktion von Nickela-fünf- in Vierringkomplexe—neuartige startsysteme für die präparative chemie. J Organomet Chem 407(3):C23–C29. doi:10.1016/0022-328x(91)86320-p

    Article  CAS  Google Scholar 

  54. Jin D, Schmeier TJ, Williard PG, Hazari N, Bernskoetter WH (2013) Lewis acid induced β-elimination from a nickelalactone: efforts toward acrylate production from CO2 and ethylene. Organometallics 32(7):2152–2159. doi:10.1021/om400025h

    Article  CAS  Google Scholar 

  55. Jin D, Williard PG, Hazari N, Bernskoetter WH (2014) Effect of sodium cation on metallacycle β-hydride elimination in CO2–ethylene coupling to acrylates. Chem Eur J 20(11):3205–3211. doi:10.1002/chem.201304196

    Article  CAS  Google Scholar 

  56. Plessow PN, Schäfer A, Limbach M, Hofmann P (2014) Acrylate formation from CO2 and ethylene mediated by nickel complexes: a theoretical study. Organometallics. doi:10.1021/om500151h

    Google Scholar 

  57. Huguet N, Jevtovikj I, Gordillo A, Lejkowski ML, Lindner R, Bru M, Khalimon AY, Rominger F, Schunk SA, Hofmann P, Limbach M (2014) Nickel-catalyzed direct carboxylation of olefins with CO2: one-pot synthesis of α, β-unsaturated carboxylic acid salts. Chem Eur J 20(51):16858–16862. doi:10.1002/chem.201405528

    Article  CAS  Google Scholar 

  58. Hendriksen C, Pidko EA, Yang G, Schäffner B, Vogt D (2014) Catalytic formation of acrylate from carbon dioxide and ethene. Chem Eur J. doi:10.1002/chem.201404082

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Rieger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kraus, S., Rieger, B. (2015). Ni-Catalyzed Synthesis of Acrylic Acid Derivatives from CO2 and Ethylene. In: Lu, XB. (eds) Carbon Dioxide and Organometallics. Topics in Organometallic Chemistry, vol 53. Springer, Cham. https://doi.org/10.1007/3418_2015_111

Download citation

Publish with us

Policies and ethics