Skip to main content

Ionic Liquids in Transition Metal-Catalyzed Hydroformylation Reactions

  • Chapter
  • First Online:

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 51))

Abstract

The latest state of the art in ionic liquid-based hydroformylation is reviewed in detail in this chapter. This multiphase homogenous catalytic system represents a promising strategy in order to reduce catalyst leaching during product separation and achieve the desired ratio of linear-to-branched aldehyde with a high catalytic activity and yield. A series of different catalytic systems, ionic liquids (ILs), and ligands together with their application in the hydroformylation of a variety of alkenes is presented. The features of those ILs derived from their composition and their interactions with substrates and catalysts are also discussed. In addition, recent studies on the catalyst distribution in the bulk and on the surface of ILs are summarized. Herein, the properties of the ligands show an impact in the activity and selectivity of the reaction. Moreover, not only Co and Rh complexes can be applied in the hydroformylation in ILs but also Pt and Ru complexes. On the other hand, the uses of CO2 as chemical C1 feedstock or scCO2 as carrier for the reagents and products in the hydroformylation reaction are commented. Catalytic processes where supported ionic liquid phases (SILPs) and nanocatalysts intervened complement this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

[4-mbpy][Cl]:

1-N-n-Butyl-4-methylpyridinium chloride

[b((MeOSi)3p)im][Cl]:

1-Butyl-3-[3-(trimethoxysilyl)propyl]imidazolium chloride

[bdmim][PF6]:

1,2-Dimethyl-3-butylimidazolium hexafluorophosphate

[bmim][BF4]:

1-n-Butyl-3-methylimidazolium tetrafluoroborate

[bmim][Cl]:

1-n-Butyl-3-methylimidazolium chloride

[bmim][Co(CO)4]:

1-n-Butyl-3-methylimidazolium tetracarbonylcobaltate

[bmim][n-C12H25OSO3]:

1-n-Butyl-3-methylimidazolium n-dodecylsulfate

[bmim][n-C8H17OSO3]:

1-n-Butyl-3-methylimidazolium n-octylsulfate

[bmim][p-C6H4SO3]:

1-n-Butyl-3-methylimidazolium para-toluenesulfonate

[bmim][PF6]:

1-n-Butyl-3-methylimidazolium hexafluorophosphate

[bmim][Tf2N]:

1-n-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

[bmim][TfO]:

1-n-Butyl-3-methylimidazolium trifluoromethanesulfonate

[bpy][BF4]:

N-n-Butylpyridinium tetrafluoroborate

[bpy][Tf2N]:

N-n-Butylpyridinium bis(trifluoromethylsulfonyl)imide

[daim][An]:

1,3-Dialkylimidazolium anion

[emim][C2H5OSO3]:

1-Ethyl-3-methylimidazolium ethylsulfate

[emim][TfO]:

1-Ethyl-3-methylimidazolium trifluoromethanesulfonate

[emmim][TfO]:

1-Ethyl-2,3-dimethylimidazolium trifluoromethanesulfonate

[hmim][Tf2N]:

1-n-Hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

[hmim][TfO]:

1-n-Hexyl-3-methylimidazolium trifluoromethanesulfonate

[mbmim][TfO]:

1-(2-Methyl-n-butyl)-3-methylimidazolium trifluoromethanesulfonate

[mg][Co(CO)4]:

N-Methyl-guanidinium tetracarbonylcobaltate

[mtr][Co(CO)4]:

1-Methyl-triazolium tetracarbonylcobaltate

[NBnEt3][Tf2N]:

N-Benzyltriethylammonium bis(trifluoromethylsulfonyl)imide

[NBu4][BF4]:

Tetra-n-butylammonium tetrafluoroborate

[NEt4][Tf2N]:

Tetraethylammonium bis(trifluoromethylsulfo-nyl)imide

[NOc3Me][Tf2N]:

N-Methyltri-n-octylammonium bis(trifluoromethylsulfonyl)imide

[omim][Tf2N]:

1-n-Octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

[omim][TfO]:

1-n-Octyl-3-methylimidazolium trifluoromethanesulfonate

[P(C4H9)3(C14H29)][DBS]:

Tri(n-butyl)-n-tetradecylphosphonium dodecyl-benzenesulfonate

[P(C4H9)3(C2H5)][DEP]:

Tri(n-butyl)ethylphosphonium diethylphosphate

[P(C6H13)3(C14H29)][Cl]:

Tri(n-hexyl)-n-tetradecylphosphonium chloride

[P(C6H13)3(C14H29)][DCA]:

Tri(n-hexyl)-n-tetradecylphosphonium dicyanamide

[P(C6H13)3(C14H29)][Tf2N]:

Tri(n-hexyl)-n-tetradecylphosphonium bis(tri-fluoromethylsulfonyl)imide

[PEmim][PF6]:

1-(2′-Piperid-1′-yl-ethyl)-3-methylimidazolium hexafluorophosphate

[PEmmim][PF6]:

1-(2′-Piperid-1′-yl-ethyl)-2-methyl-3-methylimidazolium hexafluorophosphate

[prmim][TPPMS]:

1-n-Propyl-3-methylimidazolium triphenyl-phosphine-3-monosulfonate

[prmim]2[TPPDS]:

1-n-Propyl-3-methylimidazolium triphenyl-phosphine-3,3'-disulfonate

[tmg][Co(CO)4]:

N,N-Tetramethyl-guanidinium tetracarbonylcobaltate

[tmim][TfO]:

1,2,3-Trimethylimidazolium trifluoromethanesulfonate

2-(DPP-C6H4)-[mmim][BF4]:

2-Diphenylphosphinophenylen-1,3-dimethylimidazolium tetrafluoroborate

2-DPP-[mbim][PF6]:

1-n-Butyl-2-diphenylphosphino-3-methylimidazolium hexafluorophosphate

2-DPP-[PEmmim][PF6]:

1-(2′-Piperid-1′-yl-ethyl)-2-diphenylphosphino-3-methylimidazolium hexafluorophosphate

bim(B(C6H5)3):

(3-n-Butylimidazole)triphenylboron

Co:

Cobalt

CO:

Carbonyl or carbon monoxide

COD:

Cycloocta-1,5-diene

DPP-Cobaltocene:

1,1′-Bis(diphenylphosphino)cobaltocenium hexafluorophosphate

DPPiPr-Cobaltocene:

1,1′-Bis(diphenylphosphino)-iso-propylcobaltocenium hexafluorophosphate

EDX:

Energy-dispersive X-ray spectroscopy

FTIR:

Fourier transform infrared spectroscopy

ILCs:

Ionic liquid crystals

IR:

Infrared

m.p.:

Melting point

MAS:

Magic angle spinning

MCILs:

Metal-containing ionic liquids

MCM-41:

Mesoporous silica nanoparticles

NHCs:

N-heterocyclic carbenes

nm:

Nanometer

NMR:

Nuclear magnetic resonance

NORBOS-Cs3 :

Tricesium 3,4-dimethyl-2,5,6-tris(p-sulfonato-phenyl)-1-phosphanorbornadiene

NPs:

Nanoparticles

OPGPP:

Octylpolyethyleneglycol-phenylene-phosphite

P:

Phosphorus

PEG:

Polyethylene glycol

PFILs:

Phosphine-functionalized phosphonium ILs

PGMILs:

Polyether guanidinium methanesulfonates ILs

POP-Xantphos-2[mmim][PF6]:

Phenoxaphosphino-modified Xantphos

ppb:

Parts per billion

Pt:

Platinum

PTSA:

para-Toluene sulfonic acid

Rh:

Rhodium

Rh(CO)2(acac):

(Acetylacetonato)dicarbonylrhodium(I)

rt:

Room temperature

Ru:

Ruthenium

scCO2 :

Supercritical carbon dioxide

SCF:

Supercritical fluid

SEM:

Scanning electron microscopy

SILP:

Supported ionic liquid phase

TEM:

Transmission electron microscopy

T g :

Glass-transition temperature

TMGL:

1,1,3,3-Tetramethylguanidinium lactate

TOF:

Turn over frequency

TOMAC:

Trioctylmethylammonium chloride

TON:

Turn over number

TPP, PPh3 :

Triphenylphosphine

TPPDS:

Disodium triphenylphosphine-3,3′-disulfonate

TPPMS:

Sodium triphenylphosphine-3-monosulfonate

TPPTI:

Tri(1,2-dimethyl-3-n-butyl-imidazolium) triphenylphosphine-3,3′,3″-trisulfonate

TPPTS:

Trisodium triphenylphosphine-3,3′,3″-trisulfonate

XRD:

X‐ray diffractometry

References

  1. Franke R, Selent D, Börner A (2012) Chem Rev 112:5675–5732

    CAS  Google Scholar 

  2. Cornils B, Herrmann WA, Rasch M (1994) Angew Chem Int Ed 33:2144–2163

    Google Scholar 

  3. Magna L, Harry S, Faraj A, Olivier-Bourbigou H (2013) Oil Gas Sci Technol Rev IFP Energies Nouvelles 68:415–428

    CAS  Google Scholar 

  4. Kohlpaintner CW, Fischer RW, Cornils B (2001) Appl Catal A 221:219–225

    CAS  Google Scholar 

  5. Ungvary F (2002) Coord Chem Rev 228:61–82

    CAS  Google Scholar 

  6. Ungvary F (2005) Coord Chem Rev 249:2946–2961

    CAS  Google Scholar 

  7. Ungvary F (2007) Coord Chem Rev 251:2072–2086

    CAS  Google Scholar 

  8. Ungvary F (2007) Coord Chem Rev 251:2087–2102

    CAS  Google Scholar 

  9. Marteel AE, Davies JA, Olson WW, Abraham MA (2003) Annu Rev Env Resour 28:401–428

    Google Scholar 

  10. Joo F, Papp E, Katho A (1998) Top Catal 5:113–124

    CAS  Google Scholar 

  11. Deshpande RM, Kelkar AA, Sharma A, Julcour-Lebigue C, Delmas H (2011) Chem Eng Sci 66:1631–1639

    CAS  Google Scholar 

  12. Silva SM, Bronger RPJ, Freixa Z, Dupont J, van Leeuwen P (2003) New J Chem 27:1294–1296

    CAS  Google Scholar 

  13. Dyson P, Tilmann G (2005) Catalysis by metal complexes, vol 29. Springer, The Netherlands, p 246

    Google Scholar 

  14. Werner S, Haumann M, Wasserscheid P (2010) Annu Rev Chem Biomol 1:203–230

    CAS  Google Scholar 

  15. Dümbgen G, Neubauer D (1969) Chem Ing Tech 41:974–980

    Google Scholar 

  16. Obrecht L, Kamer PCJ, Laan W (2013) Catal Sci Technol 3:541–551

    CAS  Google Scholar 

  17. Wasserscheid P (2003) Chem Unserer Zeit 37:52–63

    CAS  Google Scholar 

  18. Davis JH (2004) Chem Lett 33:1072–1077

    CAS  Google Scholar 

  19. Welton T (2004) Coord Chem Rev 248:2459–2477

    CAS  Google Scholar 

  20. Plechkova NV, Seddon KR (2008) Chem Soc Rev 37:123–150

    CAS  Google Scholar 

  21. Dupont J, Consorti CS, Spencer J (2000) J Braz Chem Soc 11:337–344

    CAS  Google Scholar 

  22. Chauvin Y, Mussmann L, Olivier H (1995) Angew Chem Int Ed 34:2698–2700

    CAS  Google Scholar 

  23. Parshall GW (1972) J Am Chem Soc 94:8716–8719

    CAS  Google Scholar 

  24. Panda AG, Bhor MD, Jagtap SR, Bhanage BM (2008) Appl Catal A-Gen 347:142–147

    CAS  Google Scholar 

  25. Paganelli S, Perosa A, Selva M (2007) Adv Synth Catal 349:1858–1862

    CAS  Google Scholar 

  26. Leclercq L, Suisse I, Agbossou-Niedercorn F (2008) Chem Commun 311–313

    Google Scholar 

  27. Keim W, Vogt D, Waffenschmidt H, Wasserscheid P (1999) J Catal 186:481–484

    CAS  Google Scholar 

  28. Wasserscheid P, Waffenschmidt H (2000) J Mol Catal A Chem 164:61–67

    CAS  Google Scholar 

  29. Dabbawala AA, Bajaj HC, Rao GVS, Abdi SHR (2012) Appl Catal A-Gen 419–420:185–193

    Google Scholar 

  30. Williams DBG, Ajam M, Ranwell A (2007) Organometallics 26:4692–4695

    CAS  Google Scholar 

  31. Scurto AM, Leitner W (2006) Chem Commun 3681–3683

    Google Scholar 

  32. Deng C, Ou G, She J, Yuan Y (2007) J Mol Catal A: Chem 270:76–82

    CAS  Google Scholar 

  33. Tominaga K, Sasaki Y (2004) Chem Lett 33:14–15

    CAS  Google Scholar 

  34. Tominaga K-i, Sasaki Y (2004) J Mol Catal A Chem 220:159–165

    Google Scholar 

  35. K-i T, Sasaki Y (2004) Stud. Surf Sci Catal 153:227–232

    Google Scholar 

  36. Chauvin Y, Olivier H, Mussmann L (1997) EP776880-A

    Google Scholar 

  37. Diao Y, Li J, Wang L, Yang P, Yan R, Jiang L, Zhang H, Zhang S (2013) Catal Today 200:54–62

    CAS  Google Scholar 

  38. Peng Q, Deng C, Yang Y, Dai M, Yuan Y (2007) React Kinet Catal Lett 90:53–60

    CAS  Google Scholar 

  39. Mehnert CP, Cook RA, Dispenziere NC, Mozeleski EJ (2004) Polyhedron 23:2679–2688

    CAS  Google Scholar 

  40. Bronger RPJ, Silva SM, Kamer PCJ, van Leeuwen P (2004) Dalton Trans: 1590-1596

    Google Scholar 

  41. Bronger RPJ, Silva SM, Kamer PCJ, van Leeuwen P (2002) Chem Commun 3044–3045

    Google Scholar 

  42. Magna L, Harry S, Proriol D, Saussine L, Olivier-Bourbigou H (2007) Oil Gas Sci Technol 62:775–780

    CAS  Google Scholar 

  43. Dengler JE, Doroodian A, Rieger B (2011) J Organomet Chem 696:3831–3835

    CAS  Google Scholar 

  44. Favre F, Olivier-Bourbigou H, Commereuc D, Saussine L (2001) Chem Commun 1360–1361

    Google Scholar 

  45. Lin Q, Jiang W, Fu H, Chen H, Li X (2007) Appl Catal A Gen 328:83–97

    CAS  Google Scholar 

  46. Brasse CC, Englert U, Salzer A, Waffenschmidt H, Wasserscheid P (2000) Organometallics 19:3818–3823

    CAS  Google Scholar 

  47. Wasserscheid P, van Hal R, Bosmann A (2002) Green Chem 4:400–404

    CAS  Google Scholar 

  48. Wasserscheid P, Waffenschmidt H, Machnitzki P, Kottsieper KW, Stelzer O (2001) Chem Commun 451–452

    Google Scholar 

  49. Brauer DJ, Kottsieper KW, Liek C, Stelzer O, Waffenschmidt H, Wasserscheid P (2001) J Organomet Chem 630:177–184

    CAS  Google Scholar 

  50. Kottsieper KW, Stelzer O, Wasserscheid P (2001) J Mol Catal A Chem 175:285–288

    CAS  Google Scholar 

  51. Luska KL, Demmans KZ, Stratton SA, Moores A (2012) Dalton Trans 41:13533–13540

    CAS  Google Scholar 

  52. Webb PB, Kunene TE, Cole-Hamilton DJ (2005) Green Chem 7:373–379

    CAS  Google Scholar 

  53. Xu Y, Wang Y, Zeng Y, Jiang J, Jin Z (2012) Catal Lett 142:914–919

    CAS  Google Scholar 

  54. Zeng Y, Wang Y, Xu Y, Song Y, Zhao J, Jiang J, Jin Z (2012) Chinese J Catal 33:402–406

    CAS  Google Scholar 

  55. Yang J, Li F-F, Zhang J, Li J, Wang W-X (2010) Helv Chim Acta 93:1653–1660

    CAS  Google Scholar 

  56. Hamza K, Schumann H, Blum J (2009) Eur J Org Chem 1502–1505

    Google Scholar 

  57. Jin X, Zhao K, Kong F, Cui F, Yang D (2013) Catal Lett 143:839–843

    CAS  Google Scholar 

  58. Chen S-J, Wang Y-Y, Yao W-M, Zhao X-L, Vo-Thanh G, Liu Y (2013) J Mol Catal A: Chem 378:293–298

    CAS  Google Scholar 

  59. Omotowa BA, Shreeve JM (2004) Organometallics 23:783–791

    CAS  Google Scholar 

  60. Dupont J, Silva SM, de Souza RF (2001) Catal Lett 77:131–133

    CAS  Google Scholar 

  61. Jin X, Yang D, Xu X, Yang Z (2012) Chem Commun 48:9017–9019

    CAS  Google Scholar 

  62. Stenzel O, Raubenheimer HG, Esterhuysen C (2002) J Chem Soc Dalton 1132–1138

    Google Scholar 

  63. Tan B, Jiang J, Wang Y, Wei L, Chen D, Jin Z (2008) Appl Organomet Chem 22:620–623

    CAS  Google Scholar 

  64. Kong FZ, Jiang JY, Jin ZL (2004) Catal Lett 96:63–65

    CAS  Google Scholar 

  65. Sharma A, Lebigue CJ, Deshpande RM, Kelkar AA, Delmas H (2010) Ind Eng Chem Res 49:10698–10706

    CAS  Google Scholar 

  66. Leclercq L, Lacour M, Sanon SH, Schmitzer AR (2009) Chem-Eur J 15:6327–6331

    CAS  Google Scholar 

  67. Frade RF, Afonso CA (2010) Hum Exp Toxicol 29:1038–1054

    CAS  Google Scholar 

  68. Haumann M, Riisager A (2008) Chem Rev 108:1474–1497

    CAS  Google Scholar 

  69. Welton T (1999) Chem Rev 99:2071–2083

    CAS  Google Scholar 

  70. Briggs JR, Maher JM, Harrison AM (1993) US5225387-A

    Google Scholar 

  71. Keim W, Waffenschmidt H, Wasserscheid P (2000) DE19901524-A1

    Google Scholar 

  72. Valkenberg M, Sauvage E, Castro-Moriera CP, Hoelderich WF (2000) WO 0132308A

    Google Scholar 

  73. Bahrmann H, Bohnen H (2000) EP1177163-B1

    Google Scholar 

  74. Favre F, Commereuc D, Olivier-Bourbigou H (2002) US6617474; EP1241156-A1

    Google Scholar 

  75. Favre F, Commereuc D, Olivier-Bourbigou H, Saussine L (2002) EP1182187-A1

    Google Scholar 

  76. Hillebrand G, Hirschauer A, Commereuc D, Olivier-Bourbigou H, Saussine L (2004) EP1106595-A

    Google Scholar 

  77. Bohnen H, Herwig J, Hoff D, Van Hal R, Wasserscheid P, Hal RV (2004) EP1400504-A1

    Google Scholar 

  78. Magna L, Olivier Bourbigou H, Saussine L, Kruger-Tissot V, Kruger TV (2003) EP1352889-A1

    Google Scholar 

  79. Magna L, Harry S, Olivier BH, Saussine L (2008) FR2903686-A1; FR2903686-B1

    Google Scholar 

  80. Magna L, Saussine L, Proriol D, Olivier-Bourbigou H (2008) FR2903687-A1; WO2008006951-A1

    Google Scholar 

  81. Francio G, Klankermayer J, Leitner W, Schmitkamp M, Dianjun C (2009) DE102007040333-A1

    Google Scholar 

  82. Lei Z, Dai C, Chen B (2013) Chem Rev doi:10.1021/cr300497a

  83. Dyson PJ, Laurenczy G, Andre Ohlin C, Vallance J, Welton T (2003) Chem Commun 2418–2419

    Google Scholar 

  84. Kumełan J, Pérez-Salado Kamps Á, Tuma D, Maurer G (2007) Fluid Phase Equilib 260:3–8

    Google Scholar 

  85. Ferguson L, Scovazzo P (2007) Ind Eng Chem Res 46:1369–1374

    CAS  Google Scholar 

  86. Hintermair U, Zhao G, Santini CC, Muldoon MJ, Cole-Hamilton DJ (2007) Chem Commun 1462–1464

    Google Scholar 

  87. Cornlis B, Herrmann WA (1998) Aqueous-phase organometallic catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  88. Lin Q, Fu H, Jiang W, Chen H, Li X (2007) J Chem Res S 216–220

    Google Scholar 

  89. You H, Wang Y, Zhao X, Chen S, Liu Y (2013) Organometallics 32:2698–2704

    CAS  Google Scholar 

  90. Dupont J (2004) J Braz Chem Soc 15:341–350

    CAS  Google Scholar 

  91. Leclercq L, Schmitzer AR (2009) Supramol Chem 21:245–263

    CAS  Google Scholar 

  92. Steinrueck H-P (2012) Phys Chem Chem Phys 14:5010–5029

    CAS  Google Scholar 

  93. Kolbeck C, Paape N, Cremer T, Schulz PS, Maier F, Steinrueck H-P, Wasserscheid P (2010) Chem Eur J 16:12083–12087

    CAS  Google Scholar 

  94. Diebolt O, van Leeuwen PWNM, Kamer PCJ (2012) Acs Catalysis 2:2357–2370

    CAS  Google Scholar 

  95. Dyson PJ, McIndoe JS, Zhao DB (2003) Chem Commun 508–509

    Google Scholar 

  96. Behr A, Wintzer A (2011) Chem Ing Tech 83:1356–1370

    CAS  Google Scholar 

  97. Wang YH, Jiang JY, Jin ZL (2004) Catal Surv Asia 8:119–126

    CAS  Google Scholar 

  98. Hugl H, Nobis M (2008) Top Organomet Chem 23:1–17

    CAS  Google Scholar 

  99. Wasserscheid P, Waffenschmidt H (2002) ACS Symp Ser 818:373–386

    CAS  Google Scholar 

  100. Kunene TE, Webb PB, Cole-Hamilton DJ (2011) Green Chem 13:1476–1481

    CAS  Google Scholar 

  101. Buhling A, Kamer PCJ, van Leeuwen PWNM (1995) J Mol Catal A Chem 98:69–80

    CAS  Google Scholar 

  102. Hanson BE (1999) Coord Chem Rev 185–186:795–807

    Google Scholar 

  103. Beller M, Cornils B, Frohning CD, Kohlpaintner CW (1995) J Mol Catal A Chem 104:17–85

    CAS  Google Scholar 

  104. Riisager A, Eriksen KM, Wasserscheid P, Fehrmann R (2003) Catal Lett 90:149–153

    CAS  Google Scholar 

  105. Riisager A, Wasserscheid P, van Hal R, Fehrmann R (2003) J Catal 219:452–455

    CAS  Google Scholar 

  106. Unruh JD, Christenson JR (1982) J Mol Catal 14:19

    CAS  Google Scholar 

  107. Moser WR, Papite CJ, Brannon DA, Duwell RA (1987) J Mol Catal 41:271

    CAS  Google Scholar 

  108. Magee MP, Luo W, Hersh WH (2001) Organometallics 21:362–372

    Google Scholar 

  109. Erkey C, Palo DR, Haji S (2002) Fuel Chem Div Prepr 47:144

    CAS  Google Scholar 

  110. Azouri M, Andrieu J, Picquet M, Richard P, Hanquet B, Tkatchenko I (2007) Eur J Inorg Chem 4877–4883

    Google Scholar 

  111. Kainz S, Koch D, Leitner W, Baumann W (1997) Angew Chem Int Ed Engl 36:1628–1630

    CAS  Google Scholar 

  112. Machnitzki P, Tepper M, Wenz K, Stelzer O, Herdtweck E (2000) J Organomet Chem 602:158–169

    CAS  Google Scholar 

  113. Casey CP, Whiteker GT, Melville MG, Petrovich LM, Gavney JA, Powell DR (1992) J Am Chem Soc 114:5535–5543

    CAS  Google Scholar 

  114. Riisager A, Fehrmann R, Haumann M, Wasserscheid P (2006) Eur J Inorg Chem 2006:695–706

    Google Scholar 

  115. Veige AS (2008) Polyhedron 27:3177–3189

    CAS  Google Scholar 

  116. Gil W, Boczon K, Trzeciak AM, Ziolkowski JJ, Garcia-Verdugo E, Luis SV, Sans V (2009) J Mol Catal A Chem 309:131–136

    CAS  Google Scholar 

  117. Gil W, Trzeciak AM (2011) Coord Chem Rev 255:473–483

    CAS  Google Scholar 

  118. Velazquez HD, Verpoort F (2012) Chem Soc Rev 41:7032–7060

    CAS  Google Scholar 

  119. Scholten JD, Dupont J (2008) Organometallics 27:4439–4442

    CAS  Google Scholar 

  120. Herrmann WA, Kohlpaintner CW (1993) Angew Chem Int Ed Eng 32:1524–1544

    Google Scholar 

  121. Ding H, Hanson BE (1994) J Chem Soc Chem Commun 2747

    Google Scholar 

  122. Sieffert N, Wipff G (2007) J Phys Chem B 111:4951–4962

    CAS  Google Scholar 

  123. Leitner W (2002) Acc Chem Res 35:746–756

    CAS  Google Scholar 

  124. Leitner W (2003) Chem Unserer Zeit 37:32–38

    CAS  Google Scholar 

  125. Osuna AB, Serbanovic A, Nunes da Ponte M, Matsubara H, Ryu I, Dupont J (2006) Fluid Extraction. In: Afonso CAM, Crespo JG (eds) Green separation processes: fundamentals and applications. Weinheim, Wiley, pp 207–218

    Google Scholar 

  126. Niessen HG, Woelk K (2007) Top Curr Chem 276:69–110

    CAS  Google Scholar 

  127. Pitter S, Dinjus E, Ionescu C, Maniut C, Makarczyk P, Patcas F (2008) Top Organomet Chem 23:109–147

    CAS  Google Scholar 

  128. Rathke JW, Klingler RJ, Krause TR (1991) Organometallics 10:1350–1355

    CAS  Google Scholar 

  129. Sellin MF, Cole-Hamilton DJ (2000) J Chem Soc Dalton 1681–1683

    Google Scholar 

  130. Blanchard LA, Hancu D, Beckman EJ, Brennecke JF (1999) Nature 399:28–29

    Google Scholar 

  131. Scurto AM, Aki SNVK, Brennecke JF (2002) J Am Chem Soc 124:10276–10277

    CAS  Google Scholar 

  132. Mellein BR, Brennecke JF (2007) J Phys Chem B 111:4837–4843

    CAS  Google Scholar 

  133. Ren W, Sensenich B, Scurto AM (2010) J Chem Thermodyn 42:305–311

    Google Scholar 

  134. Blanchard LA, Gu Z, Brennecke JF (2001) J Phys Chem B 105:2437–2444

    CAS  Google Scholar 

  135. Anthony JL, Maginn EJ, Brennecke JF (2002) J Phys Chem B 106:7315–7320

    CAS  Google Scholar 

  136. Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ (2004) J Am Chem Soc 126:5300–5308

    CAS  Google Scholar 

  137. Scurto AM, Hutchenson K, Subramaniam B (2009) Gas-expanded liquids: fundamentals and applications. In: Scurto AM, Hutchenson K, Subramaniam B (eds) Gas-expanded liquids and near-critical media: green chemistry and engineering. American Chemical Society, Washington, DC, pp 3–37

    Google Scholar 

  138. Webb PB, Sellin MF, Kunene TE, Williamson S, Slawin AMZ, Cole-Hamilton DJ (2003) J Am Chem Soc 125:15577–15588

    CAS  Google Scholar 

  139. Sellin MF, Webb PB, Cole-Hamilton DJ (2001) Chem Commun 781–782

    Google Scholar 

  140. Ahosseini A, Ren W, Scurto AM (2009) Ind Eng Chem Res 48:4254–4265

    CAS  Google Scholar 

  141. Cole-Hamilton DJ (2003) Science 299:1702–1706

    CAS  Google Scholar 

  142. Riisager A, Fehrmann R, Haumann M, Wasserscheid P (2006) Top Catal 40:91–102

    CAS  Google Scholar 

  143. Li H, Bhadury PS, Song B, Yang S (2012) RSC Adv 2:12525–12551

    CAS  Google Scholar 

  144. Tundo P, Perosa A (2007) Chem Soc Rev 36:532–550

    CAS  Google Scholar 

  145. Hagiwara H (2012) Heterocycles 85:281–297

    CAS  Google Scholar 

  146. Van Doorslaer C, Wahlen J, Mertens P, Binnemans K, De Vos D (2010) Dalton Trans 39:8377–8390

    Google Scholar 

  147. Mehnert CP, Cook RA, Dispenziere NC, Afeworki M (2002) J Am Chem Soc 124:12932–12933

    CAS  Google Scholar 

  148. Haumann M, Dentler K, Joni J, Riisager A, Wasserscheid P (2007) Adv Synth Catal 349:425–431

    CAS  Google Scholar 

  149. Yang Y, Lin HQ, Deng CX, She JR, Yuan YZ (2005) Chem Lett 34:220–221

    CAS  Google Scholar 

  150. Yang Y, Deng CX, Yuan YZ (2005) J Catal 232:108–116

    CAS  Google Scholar 

  151. Hintermair U, Gong Z, Serbanovic A, Muldoon MJ, Santini CC, Cole-Hamilton DJ (2010) Dalton Trans 39:8501–8510

    CAS  Google Scholar 

  152. Hamza K, Blum J (2007) Eur J Org Chem 4706–4710

    Google Scholar 

  153. Panda AG, Jagtap SR, Nandurkar NS, Bhanage BM (2008) Ind Eng Chem Res 47:969–972

    CAS  Google Scholar 

  154. Mehnert CP (2004) Chem Eur J 11:50–56

    CAS  Google Scholar 

  155. Vangeli OC, Romanos GE, Beltsios KG, Fokas D, Kouvelos EP, Stefanopoulos KL, Kanellopoulos NK (2010) J Phys Chem B 114:6480–6491

    CAS  Google Scholar 

  156. Lemus J, Palomar J, Gilarranz MA, Rodriguez JJ (2011) Adsorption 17:561–571

    CAS  Google Scholar 

  157. Werner S, Szesni N, Kaiser M, Haumann M, Wasserscheid P (2012) Chem Eng Technol 35:1962–1967

    CAS  Google Scholar 

  158. Riisager A, Fehrmann R, Flicker S, van Hal R, Haumann M, Wasserscheid P (2005) Angew Chem Int Edit 44:815–819

    CAS  Google Scholar 

  159. Riisager A, Fehrmann R, Haumann M, Wasserscheid P (2006) Eur J Inorg Chem 695–706

    Google Scholar 

  160. Shylesh S, Hanna D, Werner S, Bell AT (2012) ACS Catal 2:487–493

    CAS  Google Scholar 

  161. Riisager A, Fehrmann R, Haumann M, Gorle BSK, Wasserscheid P (2005) Ind Eng Chem Res 44:9853–9859

    CAS  Google Scholar 

  162. Riisager A, Fehrmann R, Haumann M, Wasserscheid P (2008) Catalytic SILP Materials. In: Leitner W, Hölscher M (eds) Regulated systems for multiphase catalysis. Springer, Berlin Heidelberg, pp 149–161

    Google Scholar 

  163. Hanna DG, Shylesh S, Werner S, Bell AT (2012) J Catal 292:166–172

    CAS  Google Scholar 

  164. Haumann M, Jakuttis M, Werner S, Wasserscheid P (2009) J Catal 263:321–327

    CAS  Google Scholar 

  165. Jakuttis M, Schoenweiz A, Werner S, Franke R, Wiese K-D, Haumann M, Wasserscheid P (2011) Angew Chem Int Edit 50:4492–4495

    CAS  Google Scholar 

  166. Haumann M, Jakuttis M, Franke R, Schoenweiz A, Wasserscheid P (2011) Chemcatchem 3:1822–1827

    CAS  Google Scholar 

  167. Franke R, Brausch N, Fridag D, Christiansen A, Becker M, Wasserscheid P, Haumann M, Jakuttis M, Werner S, Schoenweiz A (2012) DE102010041821-A1; WO2012041846-A1

    Google Scholar 

  168. Ha HNT, Duc DT, Dao TV, Le MT, Riisager A, Fehrmann R (2012) Catal Commun 25:136–141

    CAS  Google Scholar 

  169. Clarke ML (2005) Curr Org Chem 9:701–718

    CAS  Google Scholar 

  170. Nairoukh Z, Blum J (2012) J Mol Catal A Chem 358:129–133

    CAS  Google Scholar 

  171. Migowski P, Dupont J (2007) Chem Eur J 13:32–39

    CAS  Google Scholar 

  172. Yuan Y, Yan N, Dyson PJ (2012) ACS Catal 2:1057–1069

    CAS  Google Scholar 

  173. Han D, Li X, Zhang H, Liu Z, Li J, Li C (2006) J Catal 243:318–328

    CAS  Google Scholar 

  174. Han D, Li X, Zhang H, Liu Z, Hu G, Li C (2008) J Mol Catal A Chem 283:15–22

    CAS  Google Scholar 

  175. Axet MR, Castillón S, Claver C, Philippot K, Lecante P, Chaudret B (2008) Eur J Inorg Chem 2008:3460–3466

    Google Scholar 

  176. Bruss AJ, Gelesky MA, Machado G, Dupont J (2006) J Mol Catal A Chem 252:212–218

    CAS  Google Scholar 

  177. Pospech J, Fleischer I, Franke R, Buchholz S, Beller M (2013) Angew Chem Int Ed 52:2852–2872

    CAS  Google Scholar 

  178. Currie M, Estager J, Licence P, Men S, Nockemann P, Seddon KR, Swadźba-Kwaśny M, Terrade C (2012) Inorg Chem 52:1710–1721

    Google Scholar 

  179. Petocz G, Rangits G, Shaw M, de Bod H, Williams DBG, Kollar L (2009) J Organomet Chem 694:219–222

    CAS  Google Scholar 

  180. Rangits G, Petocz G, Berente Z, Kollar L (2003) Inorg Chim Acta 353:301–305

    CAS  Google Scholar 

  181. Rangits G, Berente Z, Kegl T, Kollar L (2005) J Coord Chem 58:869–874

    CAS  Google Scholar 

  182. Illner P, Zahl A, Puchta R, van Eikema HN, Wasserscheid P, van Eldik R (2005) J Organomet Chem 690:3567–3576

    CAS  Google Scholar 

  183. Tominaga K-I, Sasaki Y (2000) Catal Commun 1:1–3

    Google Scholar 

  184. Tominaga K-I, Sasaki Y, Hagihara K, Watanabe T, Saito M (1994) Chem Lett 23:1391–1394

    Google Scholar 

  185. Tominaga K (2006) Catal Today 115:70–72

    CAS  Google Scholar 

  186. Srivastava VK, Eilbracht P (2009) Catal Commun 10:1791–1795

    CAS  Google Scholar 

  187. Mura MG, Luca LD, Giacomelli G, Porcheddu A (2012) Adv Synth Catal 354:3180–3186

    CAS  Google Scholar 

  188. Peschel A, Hentschel B, Freund H, Sundmacher K (2012) Chem Eng J 188:126–141

    CAS  Google Scholar 

  189. Peschel A, Hentschel B, Freund H, Sundmacher K (2011) In: 21st European symposium on computer aided process engineering, vol 29. pp 1246–1250

    Google Scholar 

  190. Fang J, Jana R, Tunge JA, Subramaniam B (2011) Appl Catal A Gen 393:294–301

    CAS  Google Scholar 

  191. Mercer SM, Robert T, Dixon DV, Jessop PG (2012) Catal Sci Technol 2:1315–1318

    CAS  Google Scholar 

  192. Hintermair U, Francio G, Leitner W (2011) Chem Commun 47:3691–3701

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Rieger .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 3 Summary of Rh- and Co-based hydroformylations in ILs

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rieger, B., Plikhta, A., Castillo-Molina, D.A. (2014). Ionic Liquids in Transition Metal-Catalyzed Hydroformylation Reactions. In: Dupont, J., Kollár, L. (eds) Ionic Liquids (ILs) in Organometallic Catalysis. Topics in Organometallic Chemistry, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3418_2014_86

Download citation

Publish with us

Policies and ethics