Skip to main content

Palladium-Catalysed Coupling Reactions

  • Chapter
  • First Online:
Book cover Organometallics as Catalysts in the Fine Chemical Industry

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 42))

Abstract

Palladium-catalysed coupling reactions have gained importance as a tool for the production of pharmaceutical intermediates and to a lesser extent also for the production of agrochemicals, flavours and fragrances, and monomers for polymers. In this review only these cases are discussed where it seems highly likely that the technology is or has been used for ton-scale production. We document twelve cases where the Mizoroki–Heck reaction was used to arylate an alkene. In two of these cases allylic alcohols were arylated, leading to the aldehyde or the ketone. The Suzuki reaction has been used mostly to produce biaryl compounds from aryl halides and arylboronic acid derivatives. Twelve processes were recorded. Ortho-tolyl-benzonitrile, a biaryl compound produced via the Suzuki reaction, is used as an intermediate in six different pharmaceuticals all belonging to the Sartan group of blood pressure-lowering agents. The Kumada–Corriu reaction in which an aryl or alkenyl Grignard is coupled to an aryl or alkenyl halide was used nine times. In these coupling reactions palladium is often replaced by the much cheaper nickel or iron catalysts. The Negishi reaction couples an arylzinc halide with an aryl or alkenyl halide. These reactions are fast and highly selective; the only drawback being the stoichiometric zinc waste. Two cases were found. In one of these it was possible to use only a catalytic amount of zinc (double metal catalysis). The Sonogashira reaction couples a terminal alkyne to an aryl or alkenyl halide. Three cases were found. Acetylene is usually not coupled as such in view of its instability. Instead, trimethylsilylacetylene or the acetylene acetone adduct is used. Finally, one case was found of a palladium-catalysed allylic substitution and one case of a CH-activation reaction to form a benzocyclobutane ring. Most of these reactions were implemented in production in the past ten years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carey JS, Laffan D, Thomson C, Williams MT (2006) Org Biomol Chem 4:2337–47

    Article  CAS  Google Scholar 

  2. Magano J, Dunetz JR (2011) Chem Rev 111:2177–250

    Article  CAS  Google Scholar 

  3. Heck RF (1982) Org React 27:345–90

    CAS  Google Scholar 

  4. Heck RF (1991) In: Trost BM, Fleming I (eds) Comprehensive organic synthesis, vol 4. Pergamon Press, Oxford, pp 833–63

    Chapter  Google Scholar 

  5. Bräse S, de Meijere A (1998) In: Diederich F, Stang PJ (eds) Metal-catalyzed cross-coupling reactions. Wiley-VCH, Weinheim, pp 99–166

    Google Scholar 

  6. Beletskaya IP, Cheprakov AV (2000) Chem Rev 100:3009–66

    Article  CAS  Google Scholar 

  7. de Vries JG (2001) Can J Chem 79:1086–92

    Article  Google Scholar 

  8. Oestreich M (ed) (2008) The Mizoroki-Heck reaction. Wiley-VCH, Weinheim

    Google Scholar 

  9. Reetz MT, de Vries JG (2004) Chem Commun 1559–1563

    Google Scholar 

  10. de Vries JG (2006) Dalton Trans 421–429

    Google Scholar 

  11. Ritter K (1993) Synthesis 735–762

    Google Scholar 

  12. Blaser H-U, Spencer A (1982) J Organomet Chem 233:267–74

    Article  CAS  Google Scholar 

  13. Miura M, Hashimoto H, Itoh K, Nomura M (1990) J Chem Soc Perkin Trans I 2207–2215

    Google Scholar 

  14. Kikukawa K, Matsuda T (1977) Chem Lett 159–162

    Google Scholar 

  15. Stephan MS, Teunissen AJJM, Verzijl GKM, de Vries JG (1998) Angew Chem Int Ed Engl 37:662–4

    Article  CAS  Google Scholar 

  16. Portnoy M, Ben-David Y, Rousso I, Milstein D (1994) Organometallics 13:3465–79

    Article  CAS  Google Scholar 

  17. Herrmann WA, Brossmer C, Reisinger C-P, Riermeier TH, Öfele K, Beller M (1997) Chem Eur J 3:1357–64

    Article  CAS  Google Scholar 

  18. Beller M, Zapf A (1998) Synlett 7:792–3

    Article  Google Scholar 

  19. Reetz MT, Lohmer G, Schwickardi R (1998) Angew Chem Int Ed Engl 37:481–3

    Article  CAS  Google Scholar 

  20. Littke AP, Fu GC (1999) J Org Chem 64:10–1

    Article  CAS  Google Scholar 

  21. Hirabayashi K, Nishihara Y, Mori A, Hiyama T (1998) Tetrahedron Lett 39:7893–6

    Article  CAS  Google Scholar 

  22. Cabri W, Candiani I (1995) Acc Chem Res 28:2–7

    Article  CAS  Google Scholar 

  23. Baumeister P, Meyer W, Oertle K, Seifert G (1997) In: Siegrist U, Steiner H, Blaser H-U, Baiker A, Prins R (eds) Heterogeneous catalysis and fine chemicals IV. Elsevier Science BV, Amsterdam, pp 37–40

    Chapter  Google Scholar 

  24. Bader RR, Baumeister P, Blaser H-U (1996) Chimia 50:99–105

    CAS  Google Scholar 

  25. Eisenstadt A (1998) In: Herkes FE (ed) Catalysis of Organic Reactions (Chemical Industries), Vol 75, pp 415–427

    Google Scholar 

  26. Pröckl SS, Kleist W, Gruber MA, Köhler K (2004) Angew Chem Int Ed 43:1881–2

    Article  Google Scholar 

  27. McChesney J (1999) Spec Chem 6:98

    Google Scholar 

  28. Lin RW, Herndon R, Allen RH, Chockalingham KC, Focht GD, Roy RK (1998) WO98/30529, Albemarle Corporation, Baton Rouge

    Google Scholar 

  29. Ramachandran V, Wu T-C, Berry CB (1998) WO9837052, Albemarle Corporation, Baton Rouge

    Google Scholar 

  30. DeVries RA, Vosejpka PC, Ash ML (1998) In: Herkes FE (ed) Catalysis of Organic Reactions (Chemical Industries), Vol 75

    Google Scholar 

  31. Shinkai I, King AO, Larsen RD (1994) Pure Appl Chem 66:1551–6

    Article  CAS  Google Scholar 

  32. Belley ML, Leger S, Roy P, Xiang YB, Labelle M, Guay D (1992) EP0480717, Merck Frosst Canada Inc., Toronto

    Google Scholar 

  33. de Vries AHM, Mulders JMCA, Mommers JHM, Henderickx HJW, de Vries JG (2003) Org Lett 5:3285–8

    Article  Google Scholar 

  34. de Vries AHM, Parlevliet FJ, Schmieder-van de Vondervoort L, Mommers JHM, Henderickx HJW, Walet MAN, de Vries JG (2002) Adv Synth Catal 344:996–1002

    Article  Google Scholar 

  35. Lifshitz-Liron R (2007) WO2007/127449, Teva Pharmaceutical Industries Ltd., Petah Tikya

    Google Scholar 

  36. Lifshitz-Liron R, Eisenstadt A, Wizel S, Avhar-Maydan S, Raizi Y, Ramati R (2006) WO2006/125026, Teva Pharmaceutical Industries Ltd.,Petah Tikya

    Google Scholar 

  37. Macor JE, Wythes MJ (1992) WO1992/006973, Pfizer Inc., New York

    Google Scholar 

  38. Ashcroft CP, Hellier P, Pettman A, Watkinson S (2011) Org Proc Res Dev 15:98–103

    Article  CAS  Google Scholar 

  39. Ogilvie RJ (2002) WO2002/050063, Pfizer Ltd, Mumbai

    Google Scholar 

  40. Volpicelli R, Maragni P, Cotarca L, Foletto J, Massaccesi F (2008) WO2008/064827, Zach System S.P.A., Lonigo Vicenza

    Google Scholar 

  41. Taylor EC, Kuhnt D, Shih C, Rinzel SM, Grindey GB, Barredo J, Jannatipour M, Moran RG (1992) J Med Chem 35:4450–4

    Article  CAS  Google Scholar 

  42. Kjell DP, Hallberg DW, Kalbfleisch JM, McCurry CK, Semo MJ, Sheldon EM, Spitler JT, Wang M (2005) Org Proc Res Dev 9:738–42

    Article  CAS  Google Scholar 

  43. Kjell DP, Slattery BJ, Semo MJ (1999) J Org Chem 64:5722–4

    Article  CAS  Google Scholar 

  44. Larock RC, Leung W-Y, Stolz-Dunn S (1989) Tetrahedron Lett 30:6629–6632

    Article  CAS  Google Scholar 

  45. Guillemont J et al (2005) J Med Chem 48:2072–2079

    Article  CAS  Google Scholar 

  46. Schils D, Stappers F, Solberghe G, van Heck R, Coppens M, Van den Heuvel D, Van der Donck P, Callewaert T, Meeussen F, De Bie E, Eersels K, Schouteden E (2008) Org Proc Res Dev 12:530–6

    Article  CAS  Google Scholar 

  47. Singer RA, McKinley JD, Barbe G, Farlow RA (2004) Org Lett 6:2357–60

    Article  CAS  Google Scholar 

  48. Wüstenberg B, Stemmler RT, Létinois U, Bonrath W, Hugentobler M, Netscher T (2011) Chimia 65:420–8

    Article  Google Scholar 

  49. Haerter R, Lemke U, Radspieler A (2005) WO2005/023740, DSM IP Assets B.V., Heerlen

    Google Scholar 

  50. Bonrath W, Eggersdorfer M, Netscher T (2007) Catal Today 121:45–57

    Article  CAS  Google Scholar 

  51. Miyaura N, Suzuki A (1995) Chem Rev 95:2457–83

    Article  CAS  Google Scholar 

  52. Alonso F, Beletskaya IP, Yus M (2008) Tetrahedron 64:3047–101

    Article  CAS  Google Scholar 

  53. Röper M (2006) Chem Unserer Zeit 40:126–35

    Article  Google Scholar 

  54. Eicken K, Gebhardt J, Rang H, Rack M, Schäfer P (1997) WO97/33846, BASF Aktiengesellschaft, Ludwigshafen

    Google Scholar 

  55. Engel S, Overding T (2006) WO2006092429, BASF Aktiengesellschaft, Ludwigshafen

    Google Scholar 

  56. Haber S, Manero J (1995) EP0694530, Hoechst AG, Frankfurt

    Google Scholar 

  57. Debono M, Turner WW, LaGrandeur L, Burkhardt FJ, Nissen JS, Nichols KK, Rodriguez MJ, Zweifel MJ, Zeckner DJ, Gordee RS, Tang J, Parr TR Jr (1995) J Med Chem 38:3271–81

    Article  CAS  Google Scholar 

  58. Norris T, VanAlsten J, Hubbs S, Ewing M, Cai W, Jorgensen ML, Bordner J, Jensen GO (2008) Org Proc Res Dev 12:447–55

    Article  CAS  Google Scholar 

  59. Scherer S, Haber S (2000) WO00/50375, Clariant GmbH, Frankfurt am Main, Frankfurt am Main

    Google Scholar 

  60. Cui JJ, Tran-Dubé M, Shen H, Nambu M, Kung P-P, Pairish M, Jia L, Meng J, Funk L, Botrous I, McTigue M, Grodsky N, Ryan K, Padrique E, Alton G, Timofeevski S, Yamazaki S, Li Q, Zou H, Christensen J, Mroczkowski B, Bender S, Kania RS, Edwards MP (2011) J Med Chem 54:6342–63

    Article  CAS  Google Scholar 

  61. de Koning PD, McAndrew D, Moore R, Moses IB, Boyles DC, Kissick K, Stanchina CL, Cuthbertson T, Kamatani A, Rahman L, Rodriguez R, Urbina A, Sandoval (née Accacia) A, Peter Rose R (2011) Org Process Res Dev 15:1018–26

    Article  Google Scholar 

  62. Sorbera LA, Revel L, Rabasseda X, Castaner J (2001) Drugs Fut 26:32–8

    CAS  Google Scholar 

  63. Birari DR, Rao DR, Kankan RN (2011) WO2011/073617, Cipla Ltd., Mumbai

    Google Scholar 

  64. Yamamoto T, Muto K, Komiyama M, Canivet J, Yamaguchi J, Itami K (2011) Chem Eur J 17:10113–22

    Article  CAS  Google Scholar 

  65. Hayashi K, Takahata M, Kawamura Y, Todo Y (2002) Arzneim Forsch Drug Res 52:903–13

    CAS  Google Scholar 

  66. Todo Y, Hayashi K, Takahata M, Watanabe Y, Narita H (2000) US Patent 6,025,370, Toyama Chemical Co. Ltd., Tokyo

    Google Scholar 

  67. Carter MC, Cockerill GS, Guntrip SB, Lackey KE, Smith KJ (1999) WO99/35146, Glaxo Group Limited, Brentford

    Google Scholar 

  68. McClure MS, Osterhout MH, Roschangar F, Sacchetti MJ (2002) WO02/02552, Glaxo Group Limited, Brentford

    Google Scholar 

  69. Chen Y-F, Henschke JP, Liu Y, Chu G, Zhang X (2011) WO2011/116634, Scinopharm Taiwan Ltd., Tainan

    Google Scholar 

  70. Zhou J, Liu P, Lin Q, Metcalf BW, Meloni D, Pan Y, Xia M, Li M, Yue T-Y, Rodgers JD, Wang H (2010) WO2010/083283, Incyte Corporation, Wilmington

    Google Scholar 

  71. Lin Q, Meloni D, Pan Y, Xia M, Rodgers J, Shepard S, Li M, Galya L, Metcalf B, Yue T-Y, Liu P, Zhou J (2009) Org Lett 11:1999–2002

    Article  CAS  Google Scholar 

  72. Ibrahim P, Artis DR, Bremer R, Mamo S, Nespi M, Zhang C, Zhang J, Zhu Y-L, Tsai J, Hirth K-P, Bollag G, Spevak W, Cho H, Gilette SJ, Wu G, Zhu H, Shi S (2007) WO2007/002325, Plexxikon Inc., Berkeley

    Google Scholar 

  73. Hildebrand S, Mair H-J, Radinov RN, Ren Y, Wright JA (2011) WO2011/015522, Hoffmann-La Roche, Basel

    Google Scholar 

  74. Ye E, Tan H, Li S, Fan WY (2006) Angew Chem Int Ed 45:1120–3

    Article  CAS  Google Scholar 

  75. Potter GA, Banie SE, Jarman M, Rowlands MG (1995) J Med Chem 38:2463–71

    Article  CAS  Google Scholar 

  76. Hunt NJ (2006) WO2006/021776, BTG International Limited, London

    Google Scholar 

  77. Potter GA, Hardcastle IR, Jarman M (1997) Org Prep Proc Int 29:123–34

    Article  CAS  Google Scholar 

  78. Poetsch E (1988) Kontakte (Darmstadt) 15–28

    Google Scholar 

  79. Pauluth D, Tarumi K (2004) J Mater Chem 14:1219–27

    Article  CAS  Google Scholar 

  80. Knappke CEI, Jacobi von Wangelin A (2011) Chem Soc Rev 40:4948–62

    Article  CAS  Google Scholar 

  81. Geissler H (1998) In: Beller M, Bolm C (eds) Transition metals for organic synthesis, vol 1. Wiley-VCH, Weinheim, pp 158–83

    Chapter  Google Scholar 

  82. Tamao K, Sumitani K, Kumada M (1972) J Am Chem Soc 94:4374–6

    Article  CAS  Google Scholar 

  83. Corriu RJP, Masse JP (1972) Chem Commun 144

    Google Scholar 

  84. Yamamura M, Moritani I, Murahashi S-I (1975) J Organomet Chem 91:C39–42

    Article  CAS  Google Scholar 

  85. Banno T, Hayakawa Y, Umeno M (2002) J Organomet Chem 653:288–91

    Article  CAS  Google Scholar 

  86. Giordano C (1995) Abstracts of the conference “selectivity in metal promoted catalytic processes”. Peñíscola, Spain

    Google Scholar 

  87. Giordano C, Coppi L, Minisci F (1994) US Patent 5,312,975, Zambon, Bresso

    Google Scholar 

  88. Muhktar S, Nair DS, Medhane RR, Maheshwari N, Tewari N, Prasad N (2011) WO2011/033473, Ranbaxy Laboratories Limited, Gurgaon

    Google Scholar 

  89. Bold G, Fässler A, Capraro H-G, Cozens R, Klimkait T, Lazdins J, Mestan J, Poncioni B, Rösel J, Stover D, Tintelnot-Blomley M, Acemoglu F, Beck W, Boss E, Eschbach M, Hürlimann T, Masso E, Roussel S, Ucci-Stoll K, Wyss D, Lang M (1998) J Med Chem 41:3387–401

    Article  CAS  Google Scholar 

  90. Phapale VB, Cárdenas DJ (2009) Chem Soc Rev 38:1598–607

    Article  CAS  Google Scholar 

  91. Negishi E-I (2002) In: Negishi E-I, de Meijere A (eds) Handbook of organopalladium chemistry for organic synthesis, vol 1. Wiley, New York, pp 229–47

    Chapter  Google Scholar 

  92. Charpentier B, Bernardon J-M, Eustache J, Millois C, Martin B, Michel S, Shroot B (1995) J Med Chem 38:4993–5006

    Article  CAS  Google Scholar 

  93. Miller JA, Farrell RP (1998) Tetrahedron Lett 39:7275–8

    Article  CAS  Google Scholar 

  94. Doucet H, Hierso J-C (2007) Angew Chem Int Ed 46:834–71

    Article  CAS  Google Scholar 

  95. Sonogashira K (2002) In: Negishi E-I, de Meijere A (eds) Handbook of organopalladium chemistry for organic synthesis, vol 1. Wiley, New York, pp 493–529

    Chapter  Google Scholar 

  96. Sonogashira K, (2002) J Organomet Chem 653:46–9

    Google Scholar 

  97. Csékei M, Novák Z, Kotschy A (2008) Tetrahedron 64:8992–6

    Google Scholar 

  98. Zanardi A, Mata JA, Peris E (2009) Organometallics 28:4335–9

    Article  CAS  Google Scholar 

  99. Beutler U, Mazacek J, Penn G, Schenkel B, Wasmuth D (1996) Chimia 50:154–6

    CAS  Google Scholar 

  100. Nakagawa S, Asai A, Kuroyanagi S, Ishihara M, Tanaka Y (1991) EP421302, Banyu Pharmaceutical Co. Ltd, Tokyo

    Google Scholar 

  101. Szekeres T, Répási J, Szábo A, Mangion B (2008) WO2008/035212, Medichem, S. A. Sant Joan Despí (Barcelona)

    Google Scholar 

  102. Allegrini P, Attolino E, Rossi D (2011) EP2327684, Dipharma Francis S. r. l., Baranzate Milano

    Google Scholar 

  103. Strader CR, Pearce CJ, Oberlies NH, Nat (2011) J Nat Prod 74:900–7

    Article  CAS  Google Scholar 

  104. Adachi K, Kohara T, Nakao N, Afita M, Chiba K, Mishina T, Sasaki S, Fujita T (1995) Bioorg Med Chem Lett 5:853–6

    Article  CAS  Google Scholar 

  105. Sedelmeier G (2009) WO2009/115534, Novartis AG, Basel

    Google Scholar 

  106. Seidel G, Laurich D, Fürstner A (2004) J Org Chem 69:3950–2

    Article  CAS  Google Scholar 

  107. Barnett CJ, Wilson TM, Kobierski ME (1999) Org Proc Res Dev 3:184–8

    Article  CAS  Google Scholar 

  108. Chandraratna RAS (1988) EP0284288, Allergan Inc, Irvine

    Google Scholar 

  109. Frigoli S, Fuganti C, Malpezzi L, Serra S (2005) Org Proc Res Dev 9:646–50

    Article  CAS  Google Scholar 

  110. Borzilleri RM, Zheng X, Schmidt RJ, Johnson JA, Kim S-H, DiMarco JD, Fairchild CR, Gougoutas JZ, Lee FYF, Long BH, Vite GD (2000) J Am Chem Soc 122:8890–7

    Article  CAS  Google Scholar 

  111. Li WS, Thornton JE, Guo Z, Swaminathan S, McConlogue GW (2001) WO01/70716, Bristol-Myers Squibb, New York

    Google Scholar 

  112. Peglion J-L, Baudoin O, Audic N, Chaumontet M, Piccardi R (2010) WO2010/007253, Les Laboratoires Servier, Suresnes

    Google Scholar 

  113. Baudoin O, Herrbach A, Guéritte F (2003) Angew Chem Int Ed 42:5736–40

    Article  CAS  Google Scholar 

  114. de Vries JG (2003) In: Horvath IT (ed) Encyclopedia of catalysis, vol 3. Wiley, New York, pp 295–347

    Google Scholar 

  115. Tucker CE, de Vries JG (2002) Top Catal 19:111–8

    Article  CAS  Google Scholar 

  116. Allgeier AM, Shaw BJ, Hwang T-L, Milne JE, Tedrow JS, Wilde CN (2012) Organometallics 31:519–22

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes G. de Vries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Vries, J.G. (2012). Palladium-Catalysed Coupling Reactions. In: Beller, M., Blaser, HU. (eds) Organometallics as Catalysts in the Fine Chemical Industry. Topics in Organometallic Chemistry, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3418_2012_32

Download citation

Publish with us

Policies and ethics