Skip to main content

Bond Activation by Metal-Ligand Cooperation: Design of “Green” Catalytic Reactions Based on Aromatization-Dearomatization of Pincer Complexes

  • Chapter
  • First Online:

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 37))

Abstract

We have developed a new mode of bifunctional catalysis based on metal–ligand cooperation, involving aromatization–dearomatization of pyridine- and acridine-derived pincer complexes. This type of metal–ligand cooperation is involved in the recently discovered environmentally benign reactions of alcohols, catalyzed by PNP and PNN pincer complexes of ruthenium, including: (a) dehydrogenation of secondary alcohols to ketones, (b) dehydrogenative coupling of primary alcohols to form esters and H2, (c) unprecedented amide synthesis: catalytic coupling of amines with alcohols, with liberation of H2, (d) direct synthesis of imines from alcohols and amines with H2 liberation, (e) direct conversion of alcohols to acetals with H2 liberation, (f) selective synthesis of primary amines from alcohols and ammonia, and (g) hydrogenation of esters to alcohols under mild conditions. These reactions are very efficient, proceed under neutral conditions, and produce no waste.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Beller M, Bolm C (eds) (2004) Transition metals for organic synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  2. Whittaker JW (2005) Arch Biochem Biophys 433:227

    Article  CAS  Google Scholar 

  3. Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) Science 282:1853

    Article  CAS  Google Scholar 

  4. Liu Z-P, Hu P (2002) J Am Chem Soc 124:5175

    Article  CAS  Google Scholar 

  5. Fan H-J, Hall MBA (2001) J Am Chem Soc 123:3828

    Article  CAS  Google Scholar 

  6. Greco C, Bruschi M, De Gioia L, Ryde UA (2007) Inorg Chem 46:5911

    Article  CAS  Google Scholar 

  7. Noyori R, Ohkuma T (2001) Angew Chem Int Ed 40:40

    Article  CAS  Google Scholar 

  8. Clapham SE, Hadzovic A, Morris RH (2004) Coord Chem Rev 248:2201

    Article  CAS  Google Scholar 

  9. Ikariya T, Blacker J (2007) Acc Chem Res 40:1300

    Article  CAS  Google Scholar 

  10. Grutzmacher H (2008) Angew Chem Int Ed 47:1814

    Article  Google Scholar 

  11. Ikariya T, Gridnev ID (2010) Top Catal 53:894

    Article  CAS  Google Scholar 

  12. Yamakawa M, Ito H, Noyori R (2000) J Am Chem Soc 122:1466

    Article  CAS  Google Scholar 

  13. Noyori R, Koizumi M, Ishii D, Ohkuma T (2001) Pure Appl Chem 73:227

    Article  CAS  Google Scholar 

  14. Abbel R, Abdur-Rashid K, Faatz M, Hadzovic A, Lough AJ, Morris RHA (2005) J Am Chem Soc 127:1870

    Article  CAS  Google Scholar 

  15. Casey CP, Bikzhanova GA, Cui Q, Guzei IL (2005) J Am Chem Soc 127:14062

    Article  CAS  Google Scholar 

  16. Rybtchinski B, Milstein D (1999) Angew Chem Int Ed 38:870

    Article  Google Scholar 

  17. Jensen CM (1999) Chem Commun:2443

    Google Scholar 

  18. Albrecht M, van Koten G (2001) Angew Chem Int Ed 40:3750

    Article  CAS  Google Scholar 

  19. Vigalok A, Milstein D (2001) Acc Chem Res 34:798

    Article  CAS  Google Scholar 

  20. van der Boom ME, Milstein D (2003) Chem Rev 103:1759

    Article  Google Scholar 

  21. Singleton JT (2003) Tetrahedron 259:1837

    Article  Google Scholar 

  22. Milstein D (2003) Pure Appl Chem 75:445

    Article  CAS  Google Scholar 

  23. Rybtchinski B, Milstein D (2004) ACS Symp Ser 885:70

    Article  CAS  Google Scholar 

  24. Szabo KJ (2006) Synlett:811

    Google Scholar 

  25. Rybtchiski B, Milstein D (2007) In: Morales-Morales D, Jensen CM (eds) The chemistry of pincer compounds. Elsevier BV, Oxford, pp 87–105, Chapter 5

    Chapter  Google Scholar 

  26. Milstein D (2010) Top Catal 53:915

    Article  CAS  Google Scholar 

  27. Kawatsura M, Hartwig JF (2001) Organometallics 20:1960

    Article  CAS  Google Scholar 

  28. Stambuli JP, Stauffer SR, Shaughnessy KH, Hartwig JF (2001) J Am Chem Soc 123:2677

    Article  CAS  Google Scholar 

  29. Gibson DH, Pariya C, Mashuta MS (2004) Organometallics 223:2510

    Article  Google Scholar 

  30. Kloek SM, Heinekey DM, Goldberg KI (2006) Organometallics 25:3007

    Article  CAS  Google Scholar 

  31. Kloek SM, Heinekey DM, Goldberg KI (2007) Angew Chem Int Ed 46:4736

    Article  CAS  Google Scholar 

  32. Hanson SK, Heinekey DM, Goldberg KI (2008) Organometallics 27:1454

    Article  CAS  Google Scholar 

  33. Pelczar EM, Emge TJ, Krogh-Jespersen K, Goldman AS (2008) Organometallics 27:5759

    Article  CAS  Google Scholar 

  34. van der Vlugt JI, Pidko EA, Vogt D, Lutz M, Spek AL, Meetsma A (2008) Inorg Chem 47:4442

    Article  Google Scholar 

  35. Tanaka R, Yamashita M, Nazaki K (2009) J Am Chem Soc 131:14168

    Article  CAS  Google Scholar 

  36. van der Vlugt JI, Siegler MA, Janssen M, Spek AL (2009) Organometallics 28:7025

    Article  Google Scholar 

  37. van der Vlugt JI, Reek JNH (2009) Angew Chem Int Ed 48:8832

    Article  Google Scholar 

  38. Hermann D, Gandelman M, Rozenberg H, Shimon LJW, Milstein D (2002) Organometallics 21:812

    Article  CAS  Google Scholar 

  39. Ben-Ari E, Gandelman M, Rozenberg H, Shimon LJW, Milstein D (2003) J Am Chem Soc 125:4714

    Article  CAS  Google Scholar 

  40. Zhang J, Gandelman M, Shimon LJW, Rozenberg H, Milstein D (2004) Organometallics 23:4026

    Article  CAS  Google Scholar 

  41. Ben-Ari E, Cohen R, Gandelman M, Shimon LJW, Martin JML, Milstein D (2006) Organometallics 25:3190

    Article  CAS  Google Scholar 

  42. Zhang J, Gandelman M, Herrman D, Leitus G, Shimon LJW, Ben-David Y, Milstein D (2006) Inorg Chim Acta 359:1955

    Article  CAS  Google Scholar 

  43. Feller M, Karton A, Leitus G, Martin JML, Milstein D (2006) J Am Chem Soc 128:12400

    Article  CAS  Google Scholar 

  44. Feller M, Ben-Ari E, Gupta T, Shimon LJW, Leitus G, Diskin-Posner Y, Weiner L, Milstein D (2007) Inorg Chem 46:10479

    Article  CAS  Google Scholar 

  45. Zhang J, Gandelman M, Shimon LJW, Milstein D (2007) Dalton Trans:107

    Google Scholar 

  46. Zhang J, Gandelman M, Shimon LJW, Milstein D (2008) Inorg Chem 27:3526

    CAS  Google Scholar 

  47. Feller M, Iron MA, Shimon LJW, Diskin-Posner Y, Leitus G, Milstein D (2008) J Am Chem Soc 130:14374

    Article  CAS  Google Scholar 

  48. Zang J, Gandelman M, Shimon LJW, Milstein D (2008) Organometallics 27:3526

    Article  Google Scholar 

  49. Feller M, Ben-Ari E, Iron MA, Diskin-Posner Y, Leitus G, Shimon LJW, Milstein D (2010) Inorg Chem 49:1615

    Article  CAS  Google Scholar 

  50. Zhang J, Leitus G, Ben-David Y, Milstein D (2005) J Am Chem Soc 127:12429

    Article  CAS  Google Scholar 

  51. Zhang J, Leitus G, Ben-David Y, Milstein D (2006) Angew Chem Int Ed 45:1113

    Article  CAS  Google Scholar 

  52. Gunanathan C, Ben-David Y, Milstein D (2007) Science 317:790

    Article  CAS  Google Scholar 

  53. Kohl SW, Weiner L, Schwartsburd L, Konstantinovski L, Shimon LJW, Ben-David Y, Iron MA, Milstein D (2009) Science 324:74

    Article  CAS  Google Scholar 

  54. Li J, Shiota Y, Yoshizawa K (2009) J Am Chem Soc 131:13584

    Article  CAS  Google Scholar 

  55. Yang X, Hall MB (2010) J Am Chem Soc 132:120

    Article  CAS  Google Scholar 

  56. Ben-Ari E, Leitus G, Shimon LJW, Milstein D (2006) J Am Chem Soc 128:15390

    Article  CAS  Google Scholar 

  57. Iron MA, Ben-Ari E, Cohen R, Milstein D (2009) Dalton Trans:9433

    Google Scholar 

  58. Zeng G, Guo Y, Li S (2009) Inorg Chem 48:10257

    Article  CAS  Google Scholar 

  59. Khaskin E, Iron MA, Shimon LJW, Zhang J, Milstein D (2010) J Am Chem Soc 132:8542

    Article  CAS  Google Scholar 

  60. Vuzman D, Povernov E, Shimon LJW, Diskin-Posner Y, Milstein D (2008) Organometallics 27:2627

    Article  CAS  Google Scholar 

  61. Blum Y, Shvo Y (1985) J Organomet Chem 282:C7

    Article  CAS  Google Scholar 

  62. Murahashi S-I, Naota T, Ito K, Maeda Y, Taki H (1987) J Org Chem 52:4319

    Article  CAS  Google Scholar 

  63. Watson AJA, Williams JMJ (2010) Science 329:635 (and references cited therein)

    Article  CAS  Google Scholar 

  64. Zweifel T, Naubron J-V, Grutzmacher H (2009) Angew Chem Int Ed 48:559

    Article  CAS  Google Scholar 

  65. Watson AJA, Maxwell AC, Williams JMJ (2009) Org Lett 11:2667

    Article  CAS  Google Scholar 

  66. Nordstrom LU, Vogt H, Madsen R (2008) J Am Chem Soc 130:17672

    Article  CAS  Google Scholar 

  67. Ghosh SC, Senthilkumar M, Zhang Y, Xu XY, Hong SH (2009) Adv Synth Catal 351:2643

    Article  CAS  Google Scholar 

  68. Shimizu K, Ohshima K, Satsuma A (2009) Chem Eur J 15:9977

    Article  CAS  Google Scholar 

  69. Zhang J, Senthilkumar M, Ghosh SC, Hong SH (2010) Angew Chem Int Ed 49:6391

    Article  CAS  Google Scholar 

  70. Dam JH, Osztrovszky G, Nordstrøm LU, Madsen R (2010) Chem Eur J 16:6280

    Article  Google Scholar 

  71. Zhang Y, Chen C, Ghosh SC, Li Y, Hong SH (2010) Organometallics 29:1374

    Article  CAS  Google Scholar 

  72. Gnanaprakasam B, Zhang J, Milstein D (2010) Angew Chem Int Ed 48:1468

    Article  Google Scholar 

  73. Gunanathan C, Milstein D (2008) Angew Chem Int Ed 47:8661

    Article  CAS  Google Scholar 

  74. Gunanathan C, Shimon LJW, Milstein D (2009) J Am Chem Soc 131:3146

    Article  CAS  Google Scholar 

  75. Hillebrand S, Barkowska B, Bruckmann J, Kruger C, Haenel MW (1998) Tetrahedron Lett 39:813

    Article  CAS  Google Scholar 

  76. Ito T, Horino H, Koshiro Y, Yamamoto A (1982) Bull Chem Soc Jpn 55:504

    Article  CAS  Google Scholar 

  77. Narayan S, Muldoon J, Finn MG, Fokin VV, Kolb HC, Sharpless KB (2005) Angew Chem Int Ed 44:3275

    Article  CAS  Google Scholar 

  78. Shapiro N, Vigalok A (2008) Angew Chem Int Ed 47:2849

    Article  CAS  Google Scholar 

  79. Gunanathan C, Gnanaprakasam B, Iron MA, Shimon LJW, Milstein D (2010) J Am Chem Soc 132:14763

    Article  CAS  Google Scholar 

  80. Ito M, Ikariya T (2007) Chem Commun:5134

    Google Scholar 

  81. Saudan LA, Saudan CM, Debieux C, Wyss P (2007) Angew Chem Int Ed 46:7473

    Article  CAS  Google Scholar 

  82. Kuriyama W, Ino Y, Ogata O, Sayo N, Saito T (2010) Adv Synth Catal 352:92

    Article  CAS  Google Scholar 

  83. Tanaka R, Yamashita M, Nozaki K (2009) J Am Chem Soc 131:14168

    Article  CAS  Google Scholar 

  84. Ezhova NN, Kolesnichenko NV, Bulygin AV, Slivin-skii EV, Han S (2002) Russ Chem Bull Int Ed 51:2165

    Article  CAS  Google Scholar 

  85. Graf E, Leitner W (1992) J Chem Soc Chem Commun:623

    Google Scholar 

  86. Gassner F, Leitner W (1993) J Chem Soc Chem Commun:1465

    Google Scholar 

  87. Angermund K, Baumann W, Dinjus E, Fornika R, Görls H, Kessler M, Krüger C, Leitner W, Lutz F (1997) Chem Eur J 3:755

    Article  CAS  Google Scholar 

  88. Jessop PG, Ikariya T, Noyori R (1994) Nature 368:231

    Article  CAS  Google Scholar 

  89. Jessop PG, Hsiao Y, Ikariya T, Noyori R (1996) J Am Chem Soc 118:344

    Article  CAS  Google Scholar 

  90. Urakawa A, Jutz F, Laurenczy G, Baiker A (2007) Chem Eur J 13:3886

    Article  CAS  Google Scholar 

  91. Munshi P, Main AD, Linehan JC, Tai CC, Jessop PG (2002) J Am Chem Soc 124:7963

    Article  CAS  Google Scholar 

  92. Himeda Y, Onozawa-Komatsuzaki N, Sugihara H, Kasuga K (2007) Organometallics 26:702

    Article  CAS  Google Scholar 

  93. Käß M, Friedrich A, Drees M, Schneider S (2009) Angew Chem Int Ed 48:905

    Article  Google Scholar 

Download references

Acknowledgments

Our research described in this review was supported by the Israel Science Foundation, by the MINERVA Foundation, by the DIP program for German-Israeli Cooperation, by the European Research Council under the FP7 framework (ERC No 246837), and by the Kimmel Center for Molecular design. D.M. is the holder of the Israel Matz Professorial Chair of Organic Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Milstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gunanathan, C., Milstein, D. (2011). Bond Activation by Metal-Ligand Cooperation: Design of “Green” Catalytic Reactions Based on Aromatization-Dearomatization of Pincer Complexes. In: Ikariya, T., Shibasaki, M. (eds) Bifunctional Molecular Catalysis. Topics in Organometallic Chemistry, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3418_2011_6

Download citation

Publish with us

Policies and ethics