Skip to main content

Directed Evolution of Stereoselective Hybrid Catalysts

  • Chapter
  • First Online:
Topics in Organometallic Chemistry

Part of the book series: Topics in Organometallic Chemistry

Abstract

Whereas the directed evolution of stereoselective enzymes provides a useful tool in asymmetric catalysis, generality cannot be claimed because enzymes as catalysts are restricted to a limited set of reaction types. Therefore, a new concept has been proposed, namely directed evolution of hybrid catalysts in which proteins serve as hosts for anchoring ligand/transition metal entities. Accordingly, appropriate genetic mutagenesis methods are applied to the gene of a given protein host, providing after expression a library of mutant proteins. These are purified and a ligand/transition metal anchored site-specifically. Following en masse ee-screening, the best hit is identified, and the corresponding mutant gene is used as a template for another round of mutagenesis, expression, purification, bioconjugation, and screening. This allows for a Darwinian optimization of transition metal catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BINOL:

Binaphthol

BSA:

Bovine serum albumin

CAST:

Combinatorial active-site saturation test

cod:

1,5-Cyclooctadiene ee Enantiomeric excess

epPCR:

Error-prone polymerase chain reaction

ESI-MS:

Electro-spray ionization mass spectrometry

ESI-TOF MS:

Electro-spray ionization time of flight mass spectrometry

HSA:

Human serum albumin

IPTG:

Isopropyl-β-d-thiogalactopyranoside

ISM:

Iterative saturation mutagenesis

L-BAPNA:

N-Benzoyl-l-arginine-p-nitroanilide

LB-medium:

Luria–Bertani medium

MALDI-TOF-MS:

Matrix assisted laser desorption ionization time of flight mass spectrometry

MS:

Mass spectrometry

PCR:

Polymerase chain reaction

SDS PAGE:

Sodium dodecylsulfate polyacrylamide gel electrophoresis

TB-medium:

Terrific broth

WT:

Wild-type

References

  1. Noyori R (2002) Angew Chem Int Ed 41:2008

    Article  CAS  Google Scholar 

  2. Sharpless KB (2002) Angew Chem Int Ed 41:2024

    Article  CAS  Google Scholar 

  3. Jacobsen EN, Pfaltz A, Yamamoto H (1999) Comprehensive asymmetric catalysis, vol I–III. Springer, Berlin Heidelberg New York

    Google Scholar 

  4. Ager DJ (2005) Handbook of chiral fine chemicals. Marcel Dekker, New York

    Book  Google Scholar 

  5. Blaser H-U, Schmidt E (2004) Asymmetric catalysis on industrial scales. Wiley-VCH, Weinheim

    Google Scholar 

  6. Lelais G, MacMillan DWC (2006) Adrichim Acta 39:79

    CAS  Google Scholar 

  7. Seayad J, List B (2005) Org Biomol Chem 3:719

    Article  PubMed  CAS  Google Scholar 

  8. List B (2002) Tetrahedron 58:5573

    Article  CAS  Google Scholar 

  9. Berkessel A, Gröger H (2004) Asymmetric organocatalysis. VCH, Weinheim

    Google Scholar 

  10. Dalko PI, Moisan L (2001) Angew Chem Int Ed 40:3726

    Article  CAS  Google Scholar 

  11. Drauz K, Waldmann H (2002) Enzyme catalysis in organic synthesis: a comprehensive handbook, vol I–III. Wiley-VCH, Weinheim

    Book  Google Scholar 

  12. Faber K (2000) Biotransformations in organic chemistry. Springer, Berlin Heidelberg New York

    Google Scholar 

  13. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Nature (London UK) 409:258

    Article  ADS  CAS  Google Scholar 

  14. Koeller KM, Wong C-H (2001) Nature (London UK) 409:232

    Article  ADS  CAS  Google Scholar 

  15. Gennari C, Piarulli U (2003) Chem Rev 103:3071

    Article  PubMed  CAS  Google Scholar 

  16. Dahmen S, Bräse S (2001) Synthesis 1431

    Google Scholar 

  17. Hoveyda AH (2002) In: Nicolaou KC, Hanko R, Hartwig (eds) W, Handbook of combinatorial chemistry. Wiley-VCH, Weinheim, p 991

    Chapter  Google Scholar 

  18. de Vries JG, de Vries AHM (2003) Eur J Org Chem 799

    Google Scholar 

  19. Reetz MT (2001) Angew Chem Int Ed 40:284

    Article  CAS  Google Scholar 

  20. Francis MB, Jacobsen EN (1999) Angew Chem Int Ed 38:937

    Article  CAS  Google Scholar 

  21. Berkessel A, Riedl R (2000) J Comb Chem 2:215

    Article  PubMed  CAS  Google Scholar 

  22. Ding K, Du H, Yuan Y, Long J (2004) Chem Eur J 10:2872

    Article  CAS  Google Scholar 

  23. Reetz MT (2004) In: Ward MD (ed) Comprehensive coordination chemistry II. Elsevier, Amsterdam, p 509

    Google Scholar 

  24. Reetz MT, Sell T, Meiswinkel A, Mehler G (2003) Angew Chem Int Ed 42:790

    Article  CAS  Google Scholar 

  25. Reetz MT (2008) Angew Chem Int Ed 47:2556

    Article  CAS  Google Scholar 

  26. Hoen R, Boogers JAF, Bernsmann H, Minnaard AJ, Meetsma A, Tiemersma-Wegman TD, de Vries AHM, de Vries JG, Feringa BL (2005) Angew Chem Int Ed 44:4209

    Article  CAS  Google Scholar 

  27. Klibanov AM (2001) Nature (London UK) 409:241

    Article  ADS  CAS  Google Scholar 

  28. Liese A, Seelbach K, Wandrey C (2006) Industrial biotransformations. Wiley-VCH, Weinheim

    Book  Google Scholar 

  29. Imanaka T, Atomi H (2002) In: Drauz K, Waldmann H (eds) Enzyme catalysis in organic synthesis: a comprehensive handbook, vol 1. Wiley-VCH, Weinheim, p 67

    Google Scholar 

  30. Cedrone F, Ménez A, Quéméneur E (2000) Curr Opin Struct Biol 10:405

    Article  PubMed  CAS  Google Scholar 

  31. Harris JL, Craik CS (1998) Curr Opin Chem Biol 2:127

    Article  PubMed  CAS  Google Scholar 

  32. Kazlauskas RJ (2000) Curr Opin Chem Biol 4:81

    Article  PubMed  CAS  Google Scholar 

  33. Li Q-S, Schwaneberg U, Fischer M, Schmitt J, Pleiss J, Lutz-Wahl S, Schmid RD (2001) Biochim Biophys Acta 1545:114

    Article  PubMed  CAS  Google Scholar 

  34. Reetz MT, Zonta A, Schimossek K, Liebeton K, Jaeger K-E (1997) Angew Chem Int Ed Engl 36:2830

    Article  CAS  Google Scholar 

  35. Reetz MT, Wilensek S, Zha D, Jaeger K-E (2001) Angew Chem Int Ed 40:3589

    Article  CAS  Google Scholar 

  36. Reetz MT (2004) Proc Natl Acad Sci U S A 101:5716

    Article  PubMed  ADS  CAS  Google Scholar 

  37. Reetz MT (2006) In: Gates BC, Knözinger H (eds) Advances in catalysis. Elsevier, San Diego, p 1

    Google Scholar 

  38. Arnold FH, Georgiou G (2003) Directed enzyme evolution: screening and selection methods. Humana, Totowa, NJ

    Book  Google Scholar 

  39. Brakmann S, Johnsson K (2002) Directed molecular evolution of proteins (or how to improve enzymes for biocatalysis). Wiley-VCH, Weinheim

    Google Scholar 

  40. Brakmann S, Schwienhorst A (2004) Evolutionary methods in biotechnology (clever tricks for directed evolution). Wiley-VCH, Weinheim

    Google Scholar 

  41. Taylor SV, Kast P, Hilvert D (2001) Angew Chem Int Ed 40:3310

    Article  Google Scholar 

  42. Powell KA, Ramer SW, del Cardayré SB, Stemmer WPC, Tobin MB, Longchamp PF, Huisman GW (2001) Angew Chem Int Ed 40:3948

    Article  CAS  Google Scholar 

  43. Rubin-Pitel SB, Zhao H (2006) Comb Chem High Throughput Screening 9:247

    Article  CAS  Google Scholar 

  44. Kaur J, Sharma R (2006) Crit Rev Biotechnol 26:165

    Article  PubMed  CAS  Google Scholar 

  45. Reetz MT (2004) In: Brakmann S, Schwienhorst A (eds) Evolutionary methods in biotechnology. Wiley-VCH, Weinheim, p 113

    Google Scholar 

  46. Reetz MT (2004) In: Robertson DE, Noel JP (eds) Methods in enzymology. Elsevier, San Diego, CA, p 238

    Google Scholar 

  47. Reetz MT (2006) In: Reymond J-L (ed) Enzyme assays — high-throughput screening, genetic selection and fingerprinting. Wiley-VCH, Weinheim, p 41

    Google Scholar 

  48. Reetz MT, Wang, in part L-W, BocolaM. (2006) Angew Chem Int Ed 45:1236

    Article  CAS  Google Scholar 

  49. Reetz MT, Carballeira JD (2007) Nat Protoc 2:891

    Article  PubMed  CAS  Google Scholar 

  50. Clouthier CM, Kayser MM, Reetz MT (2006) J Org Chem 71:8431

    Article  PubMed  CAS  Google Scholar 

  51. Parshall GW, Ittel SD (1992) Homogeneous catalysis: the applications and chemistry of catalysis by soluble transition metal complexes, 2nd ed. Wiley, New York

    Google Scholar 

  52. Cornils B, Herrmann WA (2004) Aqueous-phase organometallic catalysis. concepts and application, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  53. Reetz MT, Rentzsch M, Pletsch A, Maywald M (2002) Chimia 56:721

    Article  CAS  Google Scholar 

  54. Reetz MT (2002) Tetrahedron 58:6595

    Article  CAS  Google Scholar 

  55. Reetz MT (2001) Patent WO92,18645

    Google Scholar 

  56. Maiwald P (2001) Neue Liganden für die asymmetrische Katalyse. PhD thesis, University Bochum

    Google Scholar 

  57. Rentzsch M (2004) Integration von Übergangsmetallkatalysatoren in Proteine für die Anwendung evolutionsbasierter Optimierungsstrategien. PhD thesis, Universität Bochum

    Google Scholar 

  58. Pletsch A (2004) Untersuchungen zur gerichteten Evolution von Übergangsmetallkatalysatoren. PhD thesis, Universität Bochum

    Google Scholar 

  59. Maywald M (2005) Methodenentwicklung zur Anwendung genetischer Optimierungsstrategien auf semisynthetische Enzyme. PhD thesis, Universität Bochum

    Google Scholar 

  60. Reetz MT, Rentzsch M, Pletsch A, Maywald M, Maiwald P, Peyralans JJ-P, Maichele A, Fu Y, Jiao N, Hollmann F, Mondière R, Taglieber A (2007) Tetrahedron 63:6404

    Article  CAS  Google Scholar 

  61. Taglieber A, Schulz F, Hollmann F, Rusek M, Reetz MT (2007) ChemBioChem 8:106

    Article  CAS  Google Scholar 

  62. Qi D, Tann C-M, Haring D, Distefano MD (2001) Chem Rev 101:3081

    Article  PubMed  CAS  Google Scholar 

  63. Polgar L, Bender ML (1966) J Am Chem Soc 88:3153

    Article  CAS  Google Scholar 

  64. Schultz PG (1988) Science 240:426

    Article  PubMed  ADS  CAS  Google Scholar 

  65. Khumtaveeporn K, DeSantis G, Jones JB (1999) Tetrahedron: Asymmetry 10:2563

    Article  CAS  Google Scholar 

  66. Smith HB, Hartman FC (1988) J Biol Chem 263:4921

    PubMed  CAS  Google Scholar 

  67. Nicholas KM, Wentworth P, Jr.Harwig CW, Wentworth AD, Shafton A, Janda KD (2002) Proc Natl Acad Sci USA 99:2648

    Article  PubMed  ADS  CAS  Google Scholar 

  68. Hamachi I, Shinkai S (1999) Eur J Org Chem 539

    Google Scholar 

  69. Barker PD (2003) Curr Opin Struct Biol 13:490

    Article  PubMed  CAS  Google Scholar 

  70. Kaiser ET (1988) Angew Chem Int Ed Engl 27:913

    Article  Google Scholar 

  71. Hilvert D, Kaiser ET (1987) Biotechnol Genet Eng Rev 5:297

    PubMed  CAS  Google Scholar 

  72. Davis BG (2003) Curr Opin Biotechnol 14:379

    Article  PubMed  CAS  Google Scholar 

  73. Eckermann AL, Barker KD, Hartings MR, Ratner MA, Meade TJ (2005) J Am Chem Soc 127:11880

    Article  PubMed  CAS  Google Scholar 

  74. Ohashi M, Koshiyama T, Ueno T, Yanase M, Fujii H, Watanabe Y (2003) Angew Chem Int Ed 42:1005

    Article  CAS  Google Scholar 

  75. Ueno T, Koshiyama T, Ohashi M, Kondo K, Kono M, Suzuki A, Yamane T, Watanabe Y (2005) J Am Chem Soc 127:6556

    Article  PubMed  CAS  Google Scholar 

  76. Suckling CJ, Zhu LM (1993) Bioorg Med Chem Lett 3:531

    Article  CAS  Google Scholar 

  77. van de Velde F, Könemann L, van Rantwijk F, Sheldon RA (2000) Biotechnol Bioeng 67:87

    Article  PubMed  CAS  Google Scholar 

  78. Hermanson GT (1996) Bioconjugate techniques. Academic, San Diego

    Google Scholar 

  79. Nakata E, Tsukiji S, Hamachi I (2007) Bull Chem Soc Jpn 80:1268

    Article  CAS  Google Scholar 

  80. Wilson ME, Whitesides GM (1978) J Am Chem Soc 100:306

    Article  CAS  Google Scholar 

  81. Lin C-C, Lin C-W, Chan ASC (1999) Tetrahedron: Asymmetry 10:1887

    Article  CAS  Google Scholar 

  82. Reetz MT, Peyralans JJ-P, Maichele A, Fu Y, Maywald M (2006) Chem Commun 2006:4318

    Article  CAS  Google Scholar 

  83. Lu Y (2005) Curr Opin Chem Biol 9:118

    Article  PubMed  CAS  Google Scholar 

  84. Lu Y, Valentine JS (1997) Curr Opin Struct Biol 7:495

    Article  PubMed  CAS  Google Scholar 

  85. Lu Y, Berry SM, Pfister TD (2001) Chem Rev 101:3047

    Article  PubMed  CAS  Google Scholar 

  86. Carey JR, Ma SK, Pfister TD, Garner DK, Kim HK, Abramite JA, Wang ZL, Guo ZJ, Lu Y (2004) J Am Chem Soc 126:10812

    Article  PubMed  CAS  Google Scholar 

  87. Kamphuis IG, Kalk KH, Swarte MBA, Drenth J (1984) J Mol Biol 179:233

    Article  PubMed  CAS  Google Scholar 

  88. Panella L, Broos J, Jin J, Fraaije MW, Janssen DB, Jeronimus-Stratingh M, Feringa BL, Minnaard AJ, de Vries JG (2005) Chem Commun 2005:5656

    Article  CAS  Google Scholar 

  89. Reetz MT, Mehler G (2000) Angew Chem Int Ed 39:3889

    Article  CAS  Google Scholar 

  90. Reetz MT, Ma JA, Goddard R (2005) Angew Chem Int Ed 44:412

    Article  CAS  Google Scholar 

  91. Barrett AJ, Salvesen G (1986) In: Dingle JT, Gordon JL (eds) Research monographs in cell and tissue physiology, vol 12. Elsevier, Amsterdam Please provide page number if possible

    Google Scholar 

  92. Kruithof CA, Casado MA, Guillena G, Egmond MR, van der Kerk-van Hoof A, Heck AJR, Klein Gebbink RJM, van Koten G (2005) Chem Eur J 11:6869

    Article  CAS  Google Scholar 

  93. Douangamath A, Walker M, Beismann-Driemeyer S, Vega-Fernandez MC, Sterner R, Wilmanns M (2002) Structure 10:185

    Article  PubMed  CAS  Google Scholar 

  94. Beismann-Driemeyer S, Sterner R (2001) J Biol Chem 276:20387

    Article  PubMed  CAS  Google Scholar 

  95. Lang D, Thoma R, Henn-Sax M, Sterner R, Wilmanns M (2000) Science 289:1546

    Article  PubMed  ADS  CAS  Google Scholar 

  96. Sterner R, Höcker B (2005) Chem Rev 105:4038

    Article  PubMed  CAS  Google Scholar 

  97. Thoma R, Obmolova G, Lang DA, Schwander M, Jenö P, Sterner R, Wilmanns M (1999) FEBS Lett 454:1

    Article  PubMed  CAS  Google Scholar 

  98. Haeger M (2005) Dissertation, Universität Regensburg

    Google Scholar 

  99. Studier FW (2005) Protein Expression Purif 41:207Dissertation, Universität Regensburg

    Article  CAS  Google Scholar 

  100. Walsh CT, Chen Y-CJ (1988) Angew Chem Int Ed Engl 27:333

    Article  Google Scholar 

  101. Flitsch S, Grogan G (2002) In: Enzyme Drauz K, Waldmann H (eds) Catalysis in organic synthesis, vol 2. Wiley-VCH, Weinheim, p 1202

    Google Scholar 

  102. Kamerbeek NM, Janssen DB, van Berkel WJH, Fraaije MW (2003) Adv Synth Catal 345:667

    Article  CAS  Google Scholar 

  103. Mihovilovic MD, Müller B, Schulze A, Stanetty P, Kayser MM (2003) Eur J Org Chem 2003:2243

    Article  CAS  Google Scholar 

  104. Hilker I, Alphand V, Wohlgemuth R, Furstoss R (2004) Adv Synth Catal 346:203

    Article  CAS  Google Scholar 

  105. Bolm C, Palazzi C, Beckmann O (2004) In: Beller M, Bolm C (eds) Transition metals for organic chemistry: building blocks and fine chemicals. Wiley-VCH, Weinheim, p 267

    Google Scholar 

  106. Murahashi S-I, Ono S, Imada Y (2002) Angew Chem Int Ed 41:2366

    Article  CAS  Google Scholar 

  107. Strukul G (1998) Angew Chem Int Ed 37:1198

    Article  Google Scholar 

  108. Servi S (1990) Synthesis 1990:1

    Article  Google Scholar 

  109. Pohl M, Sprenger GA, Müller M (2004) Curr Opin Biotechnol 15:335

    Article  PubMed  CAS  Google Scholar 

  110. Stetter H (1976) Angew Chem Int Ed Engl 15:639

    Article  Google Scholar 

  111. Breslow R (1958) J Am Chem Soc 80:3719

    Article  CAS  Google Scholar 

  112. Enders D, Kallfass U (2002) Angew Chem Int Ed 41:1743

    Article  CAS  Google Scholar 

  113. White RL, Spenser ID (1982) J Am Chem Soc 104:4934

    Article  CAS  Google Scholar 

  114. Zunszain PA, Ghuman J, Komatsu T, Tsuchida E, Curry S (2003) BMC Struct Biol 3:6

    Article  PubMed  Google Scholar 

  115. Wardell M, Wang Z, Ho JX, Robert J, Ruker F, Ruble J, Carter DC (2002) Biochem Biophys Res Commun 291:813

    Article  PubMed  CAS  Google Scholar 

  116. Dockal M, Carter DC, Rüker F (1999) J Biol Chem 274:29303

    Article  PubMed  CAS  Google Scholar 

  117. Mahammed A, Gross Z (2005) J Am Chem Soc 127:2883

    Article  PubMed  CAS  Google Scholar 

  118. Gantchev TG, Ouellet R, van Lier JE (1999) Arch Biochem Biophys 366:21

    Article  PubMed  CAS  Google Scholar 

  119. Chatterjee S, Srivastava TS (2000) J Porphyrins Phthalocyanines 4:147

    Article  CAS  Google Scholar 

  120. Ding Y, Lin B, Huie CW (2001) Electrophoresis 22:2210

    Article  PubMed  CAS  Google Scholar 

  121. Kragh-Hansen U, Chuang VTG, Otagiri M (2002) Biol Pharm Bull 25:695

    Article  PubMed  CAS  Google Scholar 

  122. Reetz MT, Jiao N (2006) Angew Chem Int Ed 45:2416

    Article  CAS  Google Scholar 

  123. Otto S, Engberts JBFN (1999) J Am Chem Soc 121:6798

    Article  CAS  Google Scholar 

  124. Otto S, Boccaletti G, Engberts JBFN (1998) J Am Chem Soc 120:4238

    Article  CAS  Google Scholar 

  125. Roelfes G, Feringa BL (2005) Angew Chem 117:3294

    Article  Google Scholar 

  126. Barr KA, Hopkins SA, Sreekrishna K (1992) Pharm Eng 12:48

    Google Scholar 

  127. Ohtani W, Nawa Y, Takeshima K, Kamuro H, Kobayashi K, Ohmura T (1998) Anal Biochem 256:56

    Article  PubMed  CAS  Google Scholar 

  128. Wilson ME, Whitesides GM (1978) J Am Chem Soc 100:306

    Article  CAS  Google Scholar 

  129. Lin C-C, Lin C-W, Chan ASC (1999) Tetrahedron: Asymmetry 10:1887

    Article  CAS  Google Scholar 

  130. Reetz MT, Peyralans J-P, Maichele A, Fu Y, Maywald M (2006) Chem Commun 2006:4318

    Article  CAS  Google Scholar 

  131. Collot J, Gradinaru J, Humbert N, Skander M, Zocchi A, Ward TR (2003) J Am Chem Soc 125:9030

    Article  PubMed  CAS  Google Scholar 

  132. Thomas CM, Ward TR (2005) Chem Soc Rev 34:337

    Article  PubMed  CAS  Google Scholar 

  133. Ward TR (2005) Chem Eur J 11:3798

    Article  CAS  Google Scholar 

  134. Klein G, Humbert N, Gradinaru J, Ivanova A, Gilardoni F, Rusbandi UE, Ward TR (2005) Angew Chem Int Ed 44:7764

    Article  CAS  Google Scholar 

  135. Letondor C, Pordea A, Humbert N, Ivanova A, Mazurek S, Novic M, Ward TR (2006) J Am Chem Soc 128:8320

    Article  PubMed  CAS  Google Scholar 

  136. Bayer EA, Ben-Hur H, Wilchek M (1990) Methods Enzymol 184:80

    Article  PubMed  CAS  Google Scholar 

  137. Thompson LD, Weber PC (1993) Gene 136:243

    Article  PubMed  CAS  Google Scholar 

  138. Sano T, Cantor CR (1990) Proc Natl Acad Sci USA 87:142

    Article  PubMed  ADS  CAS  Google Scholar 

  139. Wu SC, Qureshi MH, Wong SL (2002) Protein Expression Purif 24:348

    Article  CAS  Google Scholar 

  140. Wu S-C, Wong S-L (2002) Appl Environ Microbiol 68:1102

    Article  PubMed  CAS  Google Scholar 

  141. Gallizia A, de Lalla C, Nardone E, Santambrogio P, Brandazza A, Sidoli A, Arosio P (1998) Protein Expression Purif 14:192

    Article  CAS  Google Scholar 

  142. Weber PC, Ohlendorf DH, Wendoloski JJ, Salemme FR (1989) Science 243:85

    Article  PubMed  ADS  CAS  Google Scholar 

  143. Meinhold P, Peters MW, Hartwick A, Hernandez AR, Arnold FH (2006) Adv Synth Catal 348:763

    Article  CAS  Google Scholar 

  144. Lentz O, Feenstra A, Habicher T, Hauer B, Schmid RD, Urlacher VB (2005) ChemBioChem 7:345

    Article  CAS  Google Scholar 

  145. Kumar S, Halpert JR (2005) Biochem Biophys Res Commun 336:1

    Article  CAS  Google Scholar 

  146. Warman AJ, Roitel O, Neeli R, Girvan HM, Seward HE, Murray SA, McLean KJ, Joyce MG, Toogood H, Holt RA, Leys D, Scrutton NS, Munro AW (2005) Biochem Soc Trans 33:747

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred T. Reetz .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London

About this chapter

Cite this chapter

Reetz, M. (2008). Directed Evolution of Stereoselective Hybrid Catalysts. In: Topics in Organometallic Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3418_2008_12

Download citation

  • DOI: https://doi.org/10.1007/3418_2008_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics