Skip to main content

Serotonin, Kognition, Demenz

  • Conference paper
  • 540 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Alvarez-Alvarez M, Galdos L, Fernandez-Martinez M, Gomez-Busto F, Carcia-Centeno V, Arias-Arias C, Sanchez-Salazar C, Rodriguez-Martinez AB, Zarranz JJ, de Pancorbo MM (2003) 5-Hydroxytryptamine 6 receptor (5-HT(6)) receptor and apolipoprotein E (ApoE) polymorphisms in patients with Alzheimer's disease in the Basque Country. Neurosci Lett 339:85–87

    Article  PubMed  CAS  Google Scholar 

  • Anderson A, Adolfsson R, Eriksson K, Marcusson J (1991) Platelet [3H]paroxetine binding to 5-HT uptake sites in Alzheimer's disease. Neurobiology of Aging 12:531–534

    Google Scholar 

  • Arjona AA, Pooler AM, Lee RK, Wurtmann RJ (200) Effect of a 5-HT(2C)serotonin agonist, dexnorfenfluramine, on amyloid precursor protein metabolism in guinea pigs. Brain Research 951:135–140

    Google Scholar 

  • Arora RC, Emery OB, Meltzer HY (1991) Serotonin uptake in the blood platelets of Alzheimer's disease patients. Neurology 41:1307–1309

    PubMed  CAS  Google Scholar 

  • Bains J, Birks JS, Dening TR (2002) The efficacy of antidepressants in the treatment of depression in dementia. Cochrane Database Syst Rev: CD003944

    Google Scholar 

  • Barnes N, Costall B, Naylor R, Williams T, Wischik C (1990) Normal densities of 5-HT3 receptor recognition sites in Alzheimer's disease. neuroreport 1:253–254

    PubMed  CAS  Google Scholar 

  • Burke WJ, Park DH, Chung HD, Marshall GL, Haring JH, Joh TH (1990) Evidence for decreased transport of tryptophan hydroxylase in Alzheimer's disease. Brain Research 537:83–87

    Article  PubMed  CAS  Google Scholar 

  • Cheetham SC, Yamaguchi Y, Horton RW (1989) (3H)5-hydroxytryptamine binding sites in postmortem human brain. Neuropharmacology 28:1055–1060

    Article  PubMed  CAS  Google Scholar 

  • Chen CP, Alder JT, Bowen DM, Esiri MM, McDonald B, Hope T, Jobst KA, Francis PT (1996) Presynaptic serotonergic markers in community-acquired cases of Alzheimer disease: correlations with depression and neuroleptic medication. J Neurochem 66:1592–1598

    PubMed  CAS  Google Scholar 

  • Cheng AV, Ferrier IN, Morris CM, Jabeen S, Sahgal A, McKeith IG, Edwardson JA, Perry RH, Perry EK (1991) Cortical serotonin-S2 receptor binding in Lewy body dementia, Alzheimer's and Parkinson's diseases. J Neurol Sci 106:50–55

    Article  PubMed  CAS  Google Scholar 

  • Cross A, Crow T, Johnson J, Perry E, Perry E, Blessed G, Tomlinson B (1984) Studies on neurotransmitter receptor systems in neocortex and hippocampus in senile dementia of the Alzheimer-type. J Neurol Sci 64:109–117

    Article  PubMed  CAS  Google Scholar 

  • Cross AJ, Crow TJ, Ferrier IN, Johnson JA, Bloom SR, Corsellis JA (1984) Serotonin receptor changes in dementia of the Alzheimer type. J Neurochem 43:1574–1581

    PubMed  CAS  Google Scholar 

  • Deakin JB, Rahman S, Nestor PJ, Hodges JR, Sahakian BJ (2004) Paroxetine does not improve symptoms and impairs cognition in frontotemporal dementia: a double-blind randomized controlled trial. Psychopharmacology 172:400–408

    PubMed  CAS  Google Scholar 

  • DeFeudis FV, Drieu K (2000) Ginkgo biloba extract (EGb 761) and CNS functions: basic studies and clinical applications. Curr Drug Targets 1:25–58

    Article  PubMed  CAS  Google Scholar 

  • Devanand DP, Pelton GH, Marston K, Camacho Y, Roose SP, Stern Y, Sackeim HA (2003) Sertraline treatment of elderly patients with depression and cognitive impairment. Int J Geriatr Psychiatry 18:123–130

    PubMed  CAS  Google Scholar 

  • Dewar D, Graham DI, McCulloch J (1990) 5 HT receptors in dementia of Alzheimer type: a quantitative autoradiographic study of frontal cortex and hippocampus. J Neural Transm Park Dis Dement Sect 2:129–137

    PubMed  CAS  Google Scholar 

  • Duncan MJ, Hensler JG (2002) Aging alters in a region-specific manner serotonin transporter sites an 5-HT(1A) receptor-G protein interactions in hamster brain. Neuropharmacology 43:36–44

    Article  PubMed  CAS  Google Scholar 

  • Finkel S (2004) Pharmacology of antipsychotics in the elderly: a focus on atypicals. J Am Geriatr Soc 52:258–265

    Article  Google Scholar 

  • Förstl H, Burns A, Levy R, Cairns N (1994) Neuropathological correlates of psychotic phenomena in confirmed Alzheimer's disease. Brit J Psychiat 165:53–59

    PubMed  Google Scholar 

  • Förstl H, Burns A, Levy R, Luthert P, Cairns N (1992) Clinical and neuropathological correlates of depression in Alzheimer's disease. Psychol Med 22:877–884

    PubMed  Google Scholar 

  • Garcia-Alloza M, Hirst W, Chen C, Lasheras B, Francis P, Ramirez M (2004) Differential involvement of 5-HT (1B/1D) and 5-HT6 receptors in cognitive and non-cognitive symptoms in Alzheimer's disease. Neuropsychopharmacology 29:410–416

    Article  PubMed  CAS  Google Scholar 

  • Garza AA, Ha TG, Garcia C, Chen MJ, Russo-Neustadt AA (2004) Exercise, antidepressant treatment, and BDNF mRNA expression in the aging brain. Pharmacol Biochem Behav 77:209–220

    Article  PubMed  CAS  Google Scholar 

  • Gottfries CG (1990) Disturbance of the 5-hydroxytryptamine metabolism in brains from patients with Alzheimer's dementia. J Neural Transm Suppl 30:33–43

    Google Scholar 

  • Gottfries CG (1990) Neurochemical aspects on aging and diseases with cognitive impairment. J Neurosci Res 27:541–547

    Article  PubMed  CAS  Google Scholar 

  • Gottfries CG, Bartfai T, Carlsson A, Eckernas S, Svennerholm L (1986) Multiple biochemical deficits in both gray and white matter of Alzheimer brains. Prog Neuropsychopharmacol Biol Pscyhiatry 10:405–413

    CAS  Google Scholar 

  • Halliday G, McCann H, Pamphlett R, Brooks W, Creasey H, McCusker E, Cotton R, Broe G, Harper C (1992) Brain stem serotonin-synthesizing neurons in Alzheimer's disease: a clinicopathological correlation. Acta Neuropathologica 84:638–650

    Article  PubMed  CAS  Google Scholar 

  • Hansson G, Alafuzoff I, Winblad B, Marcusson J (1996) Intact brain serotonin system in vascular dementia. Dementia 7:196–200

    PubMed  CAS  Google Scholar 

  • Harrison BJ, Olver JS, Norman TR, Burrows GD, Wesnes KA, Nathan OJ (2004) Selective effects of acute serotonin and catecholamine depletion on memory in healthy women. Journal of Psychopharmacology 18:32–40

    PubMed  CAS  Google Scholar 

  • Harrison BJ, Olver JS, Norman TR, Nathan PJ (2002) Brain monoamines and early visual information.processing speed. Int J Neuropsychopharmacol 5:295–300

    Article  PubMed  CAS  Google Scholar 

  • Holmes C, Arranz M, Collier D, Powell J, Lovestone S (2003) Depression in Alzheimer's disease: the effect of serotonin receptor gene variation. Am J Med Genet 119 B:40–43

    Google Scholar 

  • Holmes C, Arranz MJ, Powell JF, Collier DA, Lovestone S (1998) 5-HT2A and 5-HT2C receptor polymorphisms and psychopathology in late onset Alzheimer's disease. Hum Mol Genet 7:1507–1509

    Article  PubMed  CAS  Google Scholar 

  • Hornykiewicz O, Shannah K (1994) Brain monoamines in progressive supranuclear palsy — comparison with idiopathic Parkinson's disease. J Neural Transm Suppl 42:219–227

    Google Scholar 

  • Hughes JH, Gallagher P, Stewart ME, Matthews D, Kelly TP, Young AH (2004) The effects of acute tryptophan depletion on neuropsychological function. J Psychopharmacol 17:300–309

    Google Scholar 

  • Hussain AM, Mitra AK (2000) Effect of aging on tryptophan hydroxylase in rat brain: implications on serotonin level. Drug Metab Dispos 28:1038–1042

    PubMed  CAS  Google Scholar 

  • Ikeda M, Shigenobu K, Fukuhara R, Hokoishi K, Maki N, Nebu A, Komori K, Tanabe H (2003) Efficacy of fluvoxamine as a treatment for behavioral symptoms in frontotemporal lobar degeneration patients. Dement Geriatr Cogn Disord 17:121

    Google Scholar 

  • Kompoliti K, Goetz CG, Litvan I, Jellinger K, Verny M (1998) Pharmacological therapy in progressive supranuclear palsy 55:1099–1102

    CAS  Google Scholar 

  • Korthals-Altes M, Kurz A (2000) Antidepressent agents in dementia. Z Gerontol Geriatr 33:396–400

    PubMed  CAS  Google Scholar 

  • Kovacs GG, Kloppel S, Fischer I, Dorner S, Lindeck-Pozza E, Birner P, Botefur IC, Pilz P, Volk B, Budka H (2003) Nucleus-specific alteration of raphe neurons in human neurodegenerative disorders. neuroreport 14:73–76

    PubMed  CAS  Google Scholar 

  • Kunugi H, Ueki A, Otsuka M, Isse K, Hirasawa H, Kato N, Nabika T, Kobayashi S, Nanko S (2000) Alzheimer's disease and 5-HTTLPR polymorphism of the serotonin transporter gene: no evidence for an association. Am J Med Genet 96:307–309

    Article  PubMed  CAS  Google Scholar 

  • Lai M, Tsang S, Francis P, Esiri M, Hope T, Lai O, Spence I, Chen C (2003) (3H)GR113808 binding to serotonin 5-HT (4) receptors in the postmortem neocortex of Alzheimer disease: a clinicopathological study. J Neural Transm 110:779–788

    PubMed  CAS  Google Scholar 

  • Lai M, Tsang S, Francis P, Esiri M, Keene J, Hope T, Chen C (2003) Reduced serotonin 5-HT1A receptor binding in the temporal cortex correlates with aggressive behavior in Alzheimer disease. Brain Research 974:82–87

    Article  PubMed  CAS  Google Scholar 

  • Lai M, Tsang S, Francis P, Keene J, Hope T, Esiri M, Spence I, Chen C (2002) Postmortem serotoninergic correlates of cognitive decline in Alzheimer's disease. neuroreport 13:1175–1178

    PubMed  CAS  Google Scholar 

  • Lanctot K, Herrmann N, Eryavec G, van Reekum R, Reed K, Naranjo C (2002) Central serotonergic activity is related to the aggressive behaviors of Alzheimer's disease. Neuropsychopharmacology 27:646–654

    PubMed  CAS  Google Scholar 

  • Laux G (2003) Antidepressiva. In: Lehrbuch der Gerontopsychiatrie und-psychotherapie. Thieme, Stuttgart, S 240–248

    Google Scholar 

  • Lezoualc'h F, Robert SJ (2003) The serotonin 5-HT4 receptor and the amyloid precorsor protein processing. Exp Gerontol 38:159–166

    Article  PubMed  Google Scholar 

  • Litvan I (2001) Therapy and management of frontal lobe dementia patients. Neurology 56:S41–S45

    PubMed  CAS  Google Scholar 

  • Luciana M, Collins P, Depue R (1998) Opposing roles for dopamine and serotonin in the modulation of human spatial working memory functions. Cereb Cortex 8:218–226

    Article  PubMed  CAS  Google Scholar 

  • Lyketsos CG, Sheppard JM, Steele CD, Kopunek S, Steinberg M, Baker AS, Brandt J, Rabins PV (2000) Randomized, placebo-controlled, double-blind clinical trial of sertraline in the treatment of depression complicating Alzheimer's disease: initial results from the Depression in Alzheimer's Disease study. Am J Psychiatry 157:1686–1689

    PubMed  CAS  Google Scholar 

  • Magai C, Kennedy G, Cohen CI, Gomberg D (2000) A controlled clinical trial of sertraline in the treatment of depression in nursing home patients with late-stage Alzheimer's disease. Am J Geriatr Psychiatry 8:66–74

    PubMed  CAS  Google Scholar 

  • Marcusson JO, Alafuzoff I, Backstrom IT, Ericson E, Gottfries CG, Winblad B (1987) 5-Hydroxytryptamine-sensitive [3H]imipramine binding of protein nature in the human brain. II. Effect of normal aging and dementia disorders. Brain Research 425:137–145

    Article  PubMed  CAS  Google Scholar 

  • Marksteiner J, Walch T, Bodner T, Gurka P, Donnemiller E (2003) Fluoxetine in Alzheimer's disease with severe obsessive compulsive symptoms and a low density of serotonin transporter sites. Pharmacopsychiatry 36:207–209

    PubMed  CAS  Google Scholar 

  • Masuda Y, Akagawa Y, Hishikawa Y (2002) Effect of serotonin 1A agonist tandospirone on depression symptoms in senile patients with demenia. Hum Psychopharmacol 17:191–193

    PubMed  CAS  Google Scholar 

  • Matrenzy C, Hughes JM, Kemp AH, Wesnes KA, Harrison BJ, Nathan PJ (2004) Simultaneous depletion of serotonin and catecholamines impairs sustained attention in healthy female subjects without affecting learning and memory. J Psychopharmacol 18:21–31

    Google Scholar 

  • Matsumoto M, Togashi H, Mori K, Ueno K-I, Ohashi S, Kojima T, Yoshioka M (2001) Evidence for involvement of central 5-HT4 receptors in cholinergic function associated with cognitive processes: Behavioral, electrophysiological, and neurochemical studies. J of Pharmacology and Exp Ther 296:676–682

    CAS  Google Scholar 

  • Meltzer CC, Smith G, DeKosky ST, Pollock BG, Mathis CA, Moore RY, Kupfer DJ, Reynolds CF3 (1998) Serotonin in aging, late-life depression, and Alzheimer's disease: the emerging role of functional imaging. Neuropsychopharmacology 18:407–430

    PubMed  CAS  Google Scholar 

  • Meszaros Z, Borciszky D, Mate M, Tarcali J, Szombathy T, Tekes K, Magyar K (1998) Platelet MAO-B activity and serotonin content in patients with dementia: effect of age, medication, and disease. Neurochem Res 23:863–868

    PubMed  CAS  Google Scholar 

  • Middlemiss DN, Palmer AM, Edel N, Bowen DM (1986) Binding of the novel serotonin agonist 8-hydroxy-2-(di-n-propylamino) tetralin in normal and Alzheimer brain. J Neurochem 46:993–996

    PubMed  CAS  Google Scholar 

  • Minger S, Esiri M, McDonald B, Keene J, Carter J, Hope T, Francis P (2000) Cholinergic deficits contribute to behavioral disturbance in patients with dementia. Neurology 55:1460–1467

    PubMed  CAS  Google Scholar 

  • Moretti R, Torre P, Antonello RM, Cazzato G, Bava A (2002) Depression and Alzheimer's disease: symptom or comorbidity? Am J Alzheimers Dis Other Demen 17:338–344

    PubMed  Google Scholar 

  • Moretti R, Torre P, Antonello RM, Cazzato G, Bava A (2003) Frontotemporal dementia: paroxetine as a possible treatment of behavior symptoms. A randomized, controlled, open 14-month study. Eur Neurol 49:13–19

    PubMed  CAS  Google Scholar 

  • Mori F, Cuadra G, Giacobini E (1995) Metrifonate effects on acetylcholine and biogenic amines in rat cortex. Neurochem Res 20:1081–1088

    Article  PubMed  CAS  Google Scholar 

  • Morris PL, Mayberg HS, Bolla K, Wong DF, Dannals RF, Starkstein SE, Robinson RG (1993) A preliminary study of cortical S2 serotonin receptors and cognitive performance following stroke. J Neuropsychiatry Clin Neurosci 5:395–400

    PubMed  CAS  Google Scholar 

  • Murai T, Barthel H, Berrouschot J, Sorger D, von Cramon DY, Muller U (2003) Neuroimaging of serotonin transporters in post-stroke pathological crying. Psychiatry Res 123:207–211

    PubMed  CAS  Google Scholar 

  • Murphy FC, Smith KA, Cowen PJ, Robbins TW, Sahakian BJ (2002) The effects of tryptophan depletion on cognitive and affective processing in healthy volunteers. Psychopharmacology 163:42–53

    Article  PubMed  CAS  Google Scholar 

  • Nacmias B, Tedde A, Forleo P, Piacentini S, Guarnieri BM, Bartoli A, Ortenzi L, Petruzzi C, Serio A, Marcon G, Sorbi S (2001) Association between 5-HT(2A) receptor polymorphism and psychotic symptoms in Alzheimer's disease. Biol Psychiatry 50:472–475

    Article  PubMed  CAS  Google Scholar 

  • Nishimura AL, Oliveira JR, Matioli SR, Brito-Marques PR, Bahia VS, Nitrini R, Zatz M (2000) Analysis of the disease risk locus DXS1047 polymorphism in Brazilian Alzheimer patients. Mol Psychiatry 5:563–566

    Article  PubMed  CAS  Google Scholar 

  • Nitsch RM, Deng M, Growdon JH, Wurtman RJ (1996) Serotonin 5-HT2a and 5-HT2c receptors stimulate amyloid precursor protein ectodomain secretion. J Biol Chem 271:4188–4194

    PubMed  CAS  Google Scholar 

  • Ohara K, Kondo N, Ohara K (1998) Changes of monoamines in post-mortem brains from patients with diffuse Lewy body disease. Prog Neuropsychopharmacol Biol Psychiatry 22:311–317

    Article  PubMed  CAS  Google Scholar 

  • Owens MJ, Nemeroff CB (1994) Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin Chem 40:288–295

    PubMed  CAS  Google Scholar 

  • Palego L, Marazziti D, Rossi A, Giannaccini G, Naccarato AG, Lucacchini A, Cassano GB (1997) Apparent absence of aging and gender effects on serotonin 1 A receptors in human neocortex and hippocampus. Brain Research 758:26–32

    Article  PubMed  CAS  Google Scholar 

  • Park SB, Coull JT, McShane RH, Young AH, Sahakian BJ, Robbins TW, Cowen PJ (1994) Tryptophan depletion in normal volunteers produces selective impairments in learning and memory. Neuropharmacology 33:575–588

    PubMed  CAS  Google Scholar 

  • Perry EK, Perry RH, Candy JM, Fairbairn AF, Blessed G, Dick DJ, Tomlinson BE (1984) Cortical serotonin-S2 receptor binding abnormalities in patients with Alzheimer's disease: comparisons with Parkinson's disease. Neurosci Lett 51:353–357

    Article  PubMed  CAS  Google Scholar 

  • Perry R, Miller B (2001) Behavior and treatment in frontotemporal dementia. Neurology 56:46–51

    Google Scholar 

  • Pollock BG, Mulsant BH, Rosen J, Sweet RA, Mazumdar S, Bharucha A, Marin R, Jacob NJ, Huber KA, Kastango KB, Chew ML (2002) Comparison of citalopram, perphenazine, and placebo for the acute treatment of psychosis and behavioral disturbances in hospitalized, demented patients. Am J Psychiatry 159:460–465

    Article  PubMed  Google Scholar 

  • Porter RJ, Lunn BS, O'Brien JT (2003) Effects of acute tryptophan depletion on cognitive function in Alzheimer's disease and in the healthy elderly. Psychol Med 33:49

    Article  Google Scholar 

  • Porter RJ, Marshall EF, O'Brien JT (2002) Effects of rapid tryptophan depletion on salivary and plasma cortisol in Alzheimer's disease and the healthy elderly. J Psychopharmacol 161:78

    Google Scholar 

  • Procter AW, Qurne M, Francis PT (1999) Neurochemical features of frontotemporal dementia. Dement Geriatr Cogn Disord 10Suppl 1:84

    Google Scholar 

  • Quirion R, Martel JC, Robitaille Y, Etienne P, Wood P, Nair NP, Gauthier S (1986) Neurotransmitter and receptor deficits in senile dementia of the Alzheimer type. Can J Neurol Sci 13:503–510

    PubMed  CAS  Google Scholar 

  • Rabheru K (2004) Special issues in the management of depression in older patients. Can J Psychiatry 49:41–50

    Google Scholar 

  • Reinikainen K, Paljarvi L, Huuskonen M, Soininen H, Laakso M, Riekkinen P (1988) A post-mortem study of noradrenergic, serotonergic and GABAergic neurons in Alzheimer's disease. J Neurol Sci 84:101–116

    Article  PubMed  CAS  Google Scholar 

  • Ressler KJ, Nemeroff CB (2000) Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress Anxiety 12Suppl 1:2–19

    PubMed  Google Scholar 

  • Reynolds GP, Arnold L, Rossor MN, Iversen LL, Mountjoy CQ, Roth M (1984) Reduced binding of [3H]ketanserin to cortical 5-ht2 receptors in senile dementia of the Alzheimer type. Neurosci Lett 44:47–51

    Article  PubMed  CAS  Google Scholar 

  • Riedel WJ, Klaassen T, Deuth NE, van Someren A, van Praag HM (1999) Tryptophan depletion in normal volunteers produces selective impairment in memory consolidation. Psychopharmacology 141:362–369

    Article  PubMed  CAS  Google Scholar 

  • Rocchi A, Micheli D, Ceravolo R, Manca ML, Tognoni G, Siciliano G, Murri L (2003) Serotoninergic polymorphisms (5-HTTLPR and 5-HT2A): association studies with psychosis in Alzheimer disease. Genet Test 7:309–314

    Article  PubMed  CAS  Google Scholar 

  • Schechter LE, Dawson LA, Harder JA (2002) The potential utility of 5-HT1A receptor antagonists in the treatment of cognitive dysfunction associated with Alzheimer's disease. Curr Pharm Des 8:139–145

    Article  PubMed  CAS  Google Scholar 

  • Schmitt JA, Jorissen BL, Sobczak S, van Boxtel MP, Hogervorst E, Deutz NE, Riedel WJ (2000) Tryptophan depletion impairs memory consolidation but improves focussed attention in healthy young volunteers. Psychopharmacology 14:21–29

    CAS  Google Scholar 

  • Schreiber S, Rigai T, Katz Y, Pick CG (2002) The antinociceptive effect of mirtazapine in mice is mediated through serotonergid, noradrenergic and opioid mechanisms. Brain Res Bull 58:601–605

    Article  PubMed  CAS  Google Scholar 

  • Seidl R, Kaehler ST, Prast H, Singewald N, Cairns N, Gratzer M, Lubec G (1999) Serotonin (5-HT) in brains of adult patients with Down syndrome. J Neural Transm Suppl: 221–232

    Google Scholar 

  • Sigset O, Wilhelmsson C, Mjorndal T, Eriksson S (2000) Serotonin 5-HT2A receptor binding in platelets from patients with Alzheimer's disease or vascular dementia. Int Psychogeriatr 12:537–545

    Google Scholar 

  • Sparks DL (1989) Aging and Alzheimer's disease. Altered cortical serotonergic binding. Archives of Neurology 46:138–140

    PubMed  CAS  Google Scholar 

  • Spigset O, Wilhelmsson C, Mjorndal T, Eriksson S (2000) Serotonin 5-HT2A receptor binding in platelets from patients with Alzheimer's disease or vascular dementia. International Psychogeriatrics 12:537–545

    Article  PubMed  CAS  Google Scholar 

  • Storga D, Vrecko K, Birkmayer JG, Reibnegger G (1996) Monoaminergic neurotransmitters, their precursors and metabilites in brains of Alzheimer patients. Neurosci Lett 203:29–32

    Article  PubMed  CAS  Google Scholar 

  • Sukonick DL, Pollock BG, Sweet RA, Mulsant bH, Rosen J, Klunk WE, Kastango KB, DeKosky ST, Ferrell RE (2001) The 5-HTTPR*S/*L polymorphism and aggressive behavior in Alzheimer disease. Archives of Neurology 58:1425–1428

    Article  PubMed  CAS  Google Scholar 

  • Sweet RA, Kamboh MI, Wisniewski SR, Lopez OL, Klunk WE, Kaufer DI, DeKosky ST (2002) Apolipoprotein E and alpha-1-antichymotrypsin genotypes do not predict time to psychosis in Alzheimer's disease. J Geriatr Psychiatry Neurol 15:24–30

    PubMed  Google Scholar 

  • Sweet RA, Pollock BG, Sukonick DL, Mulsant bH, Rosen J, Klunk WE, Kastango KB, DeKosky ST, Ferrell RE (2001) The 5-HTTPR polymorphism confers liability to a combined phenotype of psychotic and aggressive behavior in Alzheimer disease. International Psychogeriatrics 13:401–409

    Article  PubMed  CAS  Google Scholar 

  • Thomas DR, Jones E, Warner N, Harris B, Williams P, Bentley P (1988) Peripheral serotonergic receptor sensitivity in senile dementia of the Alzheimer type. Biol Psychiatry 23: 136–140

    Article  PubMed  CAS  Google Scholar 

  • Thome J, Retz W, Baader M, Pesold B, Hu M, Cowen M, Durany N, Adler G, Henn FA, Rosler B (2001) Association analysis of HTR6 and HTR2A polymorphisms in sporadic Alzheimer's disease. J Neural Transm 108:1175–1180

    Article  PubMed  CAS  Google Scholar 

  • Tohgi H, Abe T, Takahashi S, Kimura M, Takahashi J, Kikuchi T (1992) Concentrations of serotonin and its related substances in the cerebrospinal fluid in patients with Alzheimer type dementia. Neurosci Lett 141:9–12

    PubMed  CAS  Google Scholar 

  • Tohgi H, Abe T, Takahashi S, Saheki M, Kimura M (1995) Indoleamine concentrations in cerebrospinal fluid from patients with Alzheimer type and Binswanger type dementias before and after administration of citalopram, a synthetic serotonin uptake inhibitor. J Neural Transm Park Dis Dement Sect 9:121–131

    PubMed  CAS  Google Scholar 

  • Toshiya M, Barthel H, Berrouschot J, Sorger D, von Cramon DY, Müller U (2003) Neuroimaging of serotonin transporters in post-stroke pathological crying. Psychiatry Research: Neuroimaging 123:207–211

    Google Scholar 

  • Trappler B, Vinuela LM (1997) Fluvoxamine for stereotypic behaviour in patients with dementia. Ann Pharmacother 31:578–581

    PubMed  CAS  Google Scholar 

  • Tsai SJ, Hong CJ, Liu TY, Cheng CY, Liu HC (2001) Association study for a functional serotonin transporter gene polymorphism and late-onset Alzheimer's disease for Chinese patients. Neuropsychobiology 44:27–30

    PubMed  CAS  Google Scholar 

  • Tsang SW, Lai MK, Francis PT, Wong PT, Spence I, Esiri MM, Keene J, Hope T, Chen CP (2003) Serotonin transporters are preserved in the neocortex of anxious Alzheimer's disease patients. neuroreport 14:1297–1230

    PubMed  CAS  Google Scholar 

  • Ulfvarson J, Adami J, Wredling R, Kjellman B, Reilly M, von Bahr C (2003) Controlled withdrawal of selective serotonin reuptake inhibitor drugs in elderly patients in nursing homes with no indication of depression. Euro J Clin Pharmacol 59:735–740

    CAS  Google Scholar 

  • Versijpt J, Van Laere KJ, Dumont F, Decoo D, Vandecapelle M, Santens P, Goethals I, Audenaert K, Siegers G, Dierckx RA, Korf J (2003) Imaging of the 5-HT2A system: age-, gender-, and Alzheimer's disease-related findings. Neurobiology of Aging 24:553–561

    Article  PubMed  CAS  Google Scholar 

  • Wong EH, Reynolds GP, Bonhaus DW, Hsu S, Eglen RM (1996) Characterization of [3H]GR 113808 binding to 5-HT4 receptors in brain tissues from patients with neurodegenerative disorders. Behav Brain Res 73:249–252

    PubMed  CAS  Google Scholar 

  • Yates CM, Simpson J, Gordon A (1986) Regional brain 5-hydrosytryptamine levels are reduced in senile Down's syndrome as in Alzheimer's disease. Neurosci Lett 65:189–192

    Article  PubMed  CAS  Google Scholar 

  • Zill P, Padberg F, de Jonge S, Hampel H, Burger K, Stubner S, Boetsch T, Möller HJ, Ackenheil M, Bondy B (2000) Serotonin transporter (5-HTT) gene polymorphism in psychogeriatric patients. Neurosci Lett 284:113–115

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Steinkopff Verlag Darmstadt

About this paper

Cite this paper

Förstl, H. (2005). Serotonin, Kognition, Demenz. In: Przuntek, H., Müller, T. (eds) Das serotonerge System aus neurologischer und psychiatrischer Sicht. Steinkopff. https://doi.org/10.1007/3-7985-1537-9_5

Download citation

  • DOI: https://doi.org/10.1007/3-7985-1537-9_5

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1499-7

  • Online ISBN: 978-3-7985-1537-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics