Skip to main content

Kinetics of the antioxidant response to salinity in Crithmum maritimum

  • Conference paper

Abstract

Salinity limits the production of approximately 40% of the world’s agricultural land [1]. In order to overcome the decline of cultivated areas and the high demands for food and energy, a particular interest was accorded to the salty lands. To regreen these areas, two strategies have been developed: i) the genetic manipulation of common crop species for increased salt tolerance, and ii) the utilization of naturally salt-tolerant species (halophytes) [2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rout NP, Shaw BP (2001) Salt tolerance in aquatic macrophytes: possible involvement of the antioxidative enzymes. Plant Sci 160: 415–423

    Article  CAS  PubMed  Google Scholar 

  2. Maggio A, Reddy MP, Joly RJ (2000) Leaf gas exchange and solute accuumulation in the halophyte Salvadora persica grown at moderate salinity. Environ Exp Bot 44: 31–38

    Article  CAS  PubMed  Google Scholar 

  3. Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91: 503–527

    Article  PubMed  CAS  Google Scholar 

  4. Wang B, Luttge U, Ratajczak R (2004) Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves on the C3 halophyte Suaeda salsa L. J Plant Physiol 161: 285–293

    Article  PubMed  CAS  Google Scholar 

  5. Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166: 3–16

    Article  CAS  Google Scholar 

  6. Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50: 601–639

    Article  PubMed  CAS  Google Scholar 

  7. Shalata A, Tal M (1998) The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennelli. Physiol Plant 104: 169–174

    Article  CAS  Google Scholar 

  8. Gossett DR, Millhollon EP, Lucas MC, Banks SW, Msrney MM (1994) The effects of NaCl on antioxidant enzyme activities in callus tissue of salt-tolerant and salt-sensitive cotton cultivars (Gossypium hirsutum L.). Plant Cell Rep 13: 498–503

    Article  CAS  Google Scholar 

  9. Ben Amor N, Ben Hamed K, Debez A, Grignon C, Abdelly C (2005) Physiological and antioxidant responses of perennial halophyte Crithmum maritimum to salinity. Plant Sci 168: 889–899

    Article  CAS  Google Scholar 

  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  11. Aebi H (1984) Catalase in vitro. Method Enzymol 105: 121–126

    Article  CAS  Google Scholar 

  12. Ranieri A, Petacco F, Catagna A, Soldatini GF (2000) Redox state and peroxidase system in sunflower plants exposed to ozone. Plant Sci 159: 159–168

    Article  CAS  PubMed  Google Scholar 

  13. Arbona V, Flors V, Garcia-Agustin P, Gomez-Cadenas A (2003) Enzymatic and non enzymatic antioxidant responses of Carrizo citrange, a salt sensitive Citrus rootstock, to different levels of salinity. Plant Cell Physiol 44: 388–394

    Article  PubMed  CAS  Google Scholar 

  14. Shalata A, Mittova V, Volokita M, Guy M, Tal M(2001) Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennelli to salt-dependant oxidative stress: the root antioxydative system. Physiol Plant 112: 487–494

    Article  CAS  PubMed  Google Scholar 

  15. Muscolo A, Sidari M, Panccio MR (2003) Tolerance of Kikuyu grass to long term salt stress in associated with induction of antioxidant defences. Plant Growth Regul 41: 57–62

    Article  CAS  Google Scholar 

  16. Broetto F, Luttge U, Ratajczak R (2002) Influence of light intensity and salt-treatment on mode of photosynthesis and enzymes of the antioxidative response system of Mesembryantheumum. crystallinum. Funct Plant Biol 29: 13–23

    Article  CAS  Google Scholar 

  17. Parida AK, Das AB, Mohanty P (2004) Defence potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. J Plant Physiol 161: 531–542

    Article  PubMed  CAS  Google Scholar 

  18. Castillo F (1996) Antioxidative protection in the inducible CAM plant Sedum album L. following the imposition of severe water stress and recovery. Oecol 107: 469–477

    Article  Google Scholar 

  19. Cheesman JM, Herendeen LB, Cheesman AT, Clough BF (1997) Photosynthesis and photorespiration in mangroves under field conditions. Plant Cell Environ 20: 579–588

    Article  Google Scholar 

  20. Hernandez JA, Jimenez A, Mullineaux P, Sevilla F (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell. Environ 23: 853–862

    Article  CAS  Google Scholar 

  21. Sreenivasula N, Grimm B, Wobus U, Wescke W (2000) Differential responses of antioxidant compounds to salinity stress in salt tolerant and salt sensitive seedlings of foxtail millet (Setaria italica). Physiol Plant 109: 435–441

    Article  Google Scholar 

  22. Lee DH, Kim YS, Lee CB (2001) The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza. Sativa L.). J Plant Physiol 158: 737–745

    Article  CAS  Google Scholar 

  23. Hurkman WJ, Fornia CS, Tanaka CK (1989) Acomparison of the effects of salt on polypeptides and translatable mRNA in roots of a salt-tolerant and salt-sensitive cultivar of barley. Plant Physiol 90: 1444–1456

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag/Switzerland

About this paper

Cite this paper

Ben Amor, N., Ben Hamed, K., Ranieri, A., Abdelly, C. (2006). Kinetics of the antioxidant response to salinity in Crithmum maritimum . In: Öztürk, M., Waisel, Y., Khan, M.A., Görk, G. (eds) Biosaline Agriculture and Salinity Tolerance in Plants. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7610-4_9

Download citation

Publish with us

Policies and ethics