Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 248))

Abstract

We study fundamental groups of Kähler manifolds via their cuts or relative ends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Amoros, M. Burger, K. Corlette, D. Kotschik, D. Toledo, Fundamental groups of compact Kähler manifolds, Mathematical surveys and monographs, vol 44, AMS 1996.

    Google Scholar 

  2. Arzhantseva, G. N., On quasiconvex subgroups of word hyperbolic groups. Geom. Dedicata 87 no. 1–3 (2001), 191–208.

    MATH  MathSciNet  Google Scholar 

  3. A. Borel, Les bouts des espaces homogènes de groupes de Lie. Ann. of Math. (2) 58 (1953), 443–457.

    MATH  MathSciNet  Google Scholar 

  4. M. Bozejko, T. Januszkiewicz, R. Spazier, Infinite Coxeter groups do not have Kazdhan’s T property. J. Operator theory 19 no. 1 (1988), 63–67.

    MathSciNet  Google Scholar 

  5. F. Campana, Connexité abélienne des variétés kählériennes compactes. Bull. Soc. Math. France 126 no. 4 (1998), 483–506.

    MATH  MathSciNet  Google Scholar 

  6. J.A. Carlson, D. Toledo, Harmonic mappings of Kähler manifolds to locally symmetric spaces. Inst. Hautes Études Sci. Publ. Math. 69 (1989), 173–201.

    MathSciNet  Google Scholar 

  7. J. Cheeger, M. Gromov, On the characteristic numbers of complete manifolds of bounded curvature and finite volume. Differential geometry and complex analysis, 115–154, Springer, Berlin, 1985.

    Google Scholar 

  8. J. Cheeger, M. Gromov, L2-cohomology and group cohomology. Topology 25 no. 2 (1986), 189–215.

    Article  MathSciNet  Google Scholar 

  9. P.-A. Cherix, M. Cowling, P. Jolissaint, P. Julg, A. Valette, Groups with the Haagerup property, Progress in Math. 197, Birkhäuser, 2001.

    Google Scholar 

  10. M. Coornaert, Sur le domaine de discontinuité pour les groupes d’isométries d’un espace métrique hyperbolique. Rend. Sem. Fac. Sci. Univ. Cagliari 59 no. 2 (1989), 185–195.

    MATH  MathSciNet  Google Scholar 

  11. F. Dahmani, Combination of convergence groups, Geometry and Topology, Vol. 7 (2003) Paper no. 27, pages 933–963.

    Article  MATH  MathSciNet  Google Scholar 

  12. T. Delzant, M. Gromov, in preparation.

    Google Scholar 

  13. G. Grauert, R. Remmert, Coherent analytic sheaves. Grundlehren der Mathematischen Wissenschaften 265, Springer-Verlag, Berlin, 1984.

    Google Scholar 

  14. A. Grigor’yan, Analytic and geometric background of recurrence and nonexplosion of the Brownian motion on Riemannian manifolds. Bull. Amer. Math. Soc. (N.S.) 36 no. 2 (1999), 135–249.

    MathSciNet  Google Scholar 

  15. M. Gromov, Foliated Plateau problem II. Harmonic maps of foliations. Geom. Funct. Anal. 1 no. 3 (1991), 253–320.

    Google Scholar 

  16. M. Gromov, Sur le groupe fondamental d’une variété Kählerienne. C.R. Acad. Sci I 308 (1989), 67–70.

    Google Scholar 

  17. M. Gromov, Hyperbolic groups.

    Google Scholar 

  18. M. Gromov, Random walk in random groups. Geom. Funct. Anal. 13 no. 1 (2003), 73–146.

    Google Scholar 

  19. M. Gromov, R. Schoen, Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one. Inst. Hautes Études Sci. Publ. Math. 76 (1992), 165–246.

    MathSciNet  Google Scholar 

  20. P. de la Harpe, Classical Banach-Lie algebras and Banach-Lie groups of operators in Hilbert space, Lecture Notes in Mathematics 285, Springer, 1972.

    Google Scholar 

  21. L. Hernandez, Kähler manifolds and 1 4-pinching. Duke Math. J. 62 no. 3 (1991), 601–611.

    MATH  MathSciNet  Google Scholar 

  22. C. H. Houghton, Ends of locally compact groups and their coset spaces. J. Austral. Math. Soc. 17 (1974), 274–284.

    MATH  MathSciNet  Google Scholar 

  23. I. Kapovich, The non amenability of Schreier graph for infinite index quasiconvex subgroup of hyperbolic group. L’enseignement des mathématiques, to appear.

    Google Scholar 

  24. J. Kollar. Shafarevich maps and automorphic forms, Princeton University Press, 1995.

    Google Scholar 

  25. N. J. Korevaar, R. M. Schoen, Global existence theorems for harmonic maps to non-locally compact spaces. Comm. Anal. Geom. 5 no. 2 (1997), 333–387.

    MathSciNet  Google Scholar 

  26. R.C. Lyndon, P.E. Schupp. Combinatorial group theory. Springer, 1977.

    Google Scholar 

  27. Mok, Ngaiming, Harmonic forms with values in locally constant Hilbert bundles. Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993). J. Fourier Anal. Appl., Special Issue (1995), 433–453.

    Google Scholar 

  28. T. Napier, N. Ramachandran, Hyperbolic Kähler manifolds and holomorphic mappings to Riemann surfaces. GAFA 11 (2001), 382–406.

    MathSciNet  Google Scholar 

  29. M. Sageev, Ends of group pairs and non positively curved complexes. Proc. London. Math. Soc. 71 no. 3 (1995), 585–617.

    MATH  MathSciNet  Google Scholar 

  30. J. H. Sampson, Applications of harmonic maps to Kähler geometry. Complex differential geometry and nonlinear differential equations (Brunswick, Maine, 1984), 125–134, Contemp. Math. 49, Amer. Math. Soc., Providence, RI, 1986.

    Google Scholar 

  31. P. Scott, Ends of pairs of groups. J. Pure Appl. Algebra 11 no. 1–3 (1977/78), 179–198.

    MathSciNet  Google Scholar 

  32. C. Simpson, Lefschetz theorems for the integral leaves of a holomorphic one-form. Compositio Math. 87 no. 1 (1993), 99–113.

    MATH  MathSciNet  Google Scholar 

  33. Y.T. Siu, The complex-analyticity of harmonic map and the strong rigidity of compact Kähler manifolds. Annals of Math. 112 (1980), 73–111.

    MATH  MathSciNet  Google Scholar 

  34. D. Wise, Cubulating small cancellation groups, GAFA, to appear.

    Google Scholar 

  35. W. Woess, Random walks on infinite graphs and groups. Cambridge Tracts in Mathematics 138, Cambridge University Press, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Delzant, T., Gromov, M. (2005). Cuts in Kähler Groups. In: Bartholdi, L., Ceccherini-Silberstein, T., Smirnova-Nagnibeda, T., Zuk, A. (eds) Infinite Groups: Geometric, Combinatorial and Dynamical Aspects. Progress in Mathematics, vol 248. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7447-0_3

Download citation

Publish with us

Policies and ethics