Skip to main content

Part of the book series: Progress in Inflammation Research ((PIR))

Concluding remarks

The current concept of lymphocyte migration to the kidney that has resulted in a better conceptual understanding of progressive renal diseases has been briefly summarized. Our understanding of the molecules involved in the pathogenesis of various renal diseases may provide new therapeutic choices, and lead to the discovery of gene-based therapeutic options. It is likely that selective intervention of chemokines, at the appropriate phase of a particular disease, may have the therapeutic potential for site- and phase-specific intervention of lymphocyte migration and the progression of renal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jones DB (1953) Glomerulonephritis. Am J Pathol 29: 33–43

    PubMed  CAS  Google Scholar 

  2. Wada T, Razzaque MS, Matsushima K, Taguchi T, Yokoyama H (2004) Pathological significance of renal expression of proinflammatory molecules. In: MS Razzaque (ed): Fibrogenesis: Cellular and molecular basis. Landes Bioscience Eurekah, Georgetown, 9–26

    Google Scholar 

  3. Wolpe SD, Davatelis G, Sherry B, Beutler B, Hesse DG, Nguyen HT, Moldawer LL, Nathan CF, Lowry SF, Cerami A (1988) Macrophages secrete a novel heparin-binding protein with inflammatory and neutrophil chemotactic properties. J Exp Med 167:570–580

    Article  PubMed  CAS  Google Scholar 

  4. van Rooijen N, Sanders A (1997) Elimination, blocking, and activation of macrophages: three of a kind? J Leukoc Biol 62: 702–709

    PubMed  Google Scholar 

  5. Wang JM, Griffin JD, Rambaldi A, Chen ZG, Mantovani A (1988) Induction of monocyte migration by recombinant macrophage colony-stimulating factor. J Immunol 141:575–579

    PubMed  CAS  Google Scholar 

  6. Lan HY, Nikolic-Paterson DJ, Mu W, Atkins RC (1995) Local macrophage proliferation in the progression of glomerular and tubulointerstitial injury in rat anti-GBM glomerulonephritis. Kidney Int 48: 753–760

    PubMed  CAS  Google Scholar 

  7. Matsuda M, Shikata K, Makino H, Sugimoto H, Ota Z (1996) Glomerular expression of macrophage colony-stimulating factor and granulocyte-macrophage colony-stimulating factor in patients with various forms of glomerulonephritis. Lab Invest 75: 403–412

    PubMed  CAS  Google Scholar 

  8. Razzaque MS, Foster CS, Ahmed AR (2002) Role of enhanced expression of M-CSF in conjunctiva affected by cicatricial pemphigoid. Invest Ophthalmol Vis Sci 43:2977–2983

    PubMed  Google Scholar 

  9. Lan HY, Yang N, Nikolic-Paterson DJ, Yu XQ, Mu W, Isbel NM, Metz CN, Bucala, R, Atkins RC (2000) Expression of macrophage migration inhibitory factor in human glomerulonephritis. Kidney Int 57: 499–509

    PubMed  CAS  Google Scholar 

  10. Yang N, Nikolic-Paterson DJ, Ng YY, Mu W, Metz C, Bacher M, Meinhardt A, Bucala R, Atkins RC, Lan HY (1998) Reversal of established rat crescentic glomerulonephritis by blockade of macrophage migration inhibitory factor (MIF): potential role of MIF in regulating glucocorticoid production. Mol Med 4: 413–424

    PubMed  CAS  Google Scholar 

  11. Wada T, Schwarting A, Chesnutt MS, Wofsy D, Kelley VR (2001) Nephritogenic cytokines and disease in MRL-Fas lpr kidneys are dependent on multiple T cell subsets. Kidney Int 59: 565–578

    Article  PubMed  CAS  Google Scholar 

  12. Imasawa T, Utsunomiya Y, Kawamura T, Zhong Y, Nagasawa R, Okabe M, Maruyama N, Hosoya T, Ohno T (2001) The potential of bone marrow-derived cells to differentiate to glomerular mesangial cells. J Am Soc Nephrol 12: 1401–1409

    PubMed  CAS  Google Scholar 

  13. Ito T, Suzuki A, Imai E, Okabe M, Hori M (2001) Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling. J Am Soc Nephrol 12: 2625–2635

    PubMed  CAS  Google Scholar 

  14. Wada T, Yokoyama H, Matsushima K, Kobayashi K (2001) Chemokines in renal diseases. Int Immunopharmacol 1: 637–645

    Article  PubMed  CAS  Google Scholar 

  15. Wada T, Matsushima K, Yokoyama H (2003) Chemokines as therapeutic targets for renal diseases. Curr Med Chem Anti-Inflammatory Anti-Allergy Agents 2: 175–190

    Article  CAS  Google Scholar 

  16. Furuichi K, Wada T, Sakai N, Iwata Y, Yoshimoto K, Shimizu M, Kobayashi K, Takasawa K, Kida H, Takeda S et al (2000) Distinct expression of CCR1 and CCR5 in glomerular and interstitial lesions of human glomerular diseases. Am J Nephrol 20:291–299

    Article  PubMed  CAS  Google Scholar 

  17. Moore KJ, Wada T, Barbee SD, Kelley VR (1998) Gene transfer of RANTES elicits autoimmune renal injury in MRL-Fas lpr mice. Kidney Int 53: 1631–1641

    Article  PubMed  CAS  Google Scholar 

  18. Luo Y, Lloyd C, Gutierrez-Ramos JC, Dorf ME (1999) Chemokine amplification in mesangial cells. J Immunol 163: 3985–3992

    PubMed  CAS  Google Scholar 

  19. Morigi M, Imberti B, Zoja C, Corna D, Tomasoni S, Abbate M, Rottoli D, Angioletti S, Benigni A, Perico N et al (2004) Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 15:1794–1804

    Article  PubMed  Google Scholar 

  20. Togel F, Isaac J, Hu Z, Weiss K, Westenfelder C (2005) Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int 67: 1772–1784

    Article  PubMed  Google Scholar 

  21. Yokoo T, Ohashi T, Shen JS, Sakurai K, Miyazaki Y, Utsunomiya Y, Takahashi M, Terada Y, Eto Y, Kawamura T et al (2005) Human mesenchymal stem cells in rodent wholeembryo culture are reprogrammed to contribute to kidney tissues. Proc Natl Acad Sci USA 102: 3296–3300

    Article  PubMed  CAS  Google Scholar 

  22. Wada T, Furuichi K, Segawa C, Shimizu M, Sakai N, Takeda S, Takasawa K, Kida H, Kobayashi, K, Mukaida N et al (1999) MIP-1α and MCP-1 contribute crescents and interstitial lesions in human crescentic glomerulonephritis. Kidney Int 56: 995–1003

    Article  PubMed  CAS  Google Scholar 

  23. Sakai N, Wada T, Furuichi K, Kitagawa K, Kokubo S, Kobayashi M, Takeda S, Kida H, Kobayashi K, Mukaida N et al (2002) p38 MAPK phosphorylation and NF-κB activation in human crescentic glomerulonephritis. Nephrol Dial Transplant 17: 998–1004

    Article  PubMed  CAS  Google Scholar 

  24. Wada T, Furuichi K, Sakai N, Hisada Y, Kobayashi K, Tomosugi N, Mukaida N, Matsushima K, Yokoyama H (2001) Involvement of p38 mitogen-activated protein kinase followed by chemokine expression in crescentic glomerulonephritis. Am J Kidney Dis 38: 1169–1177

    PubMed  CAS  Google Scholar 

  25. Wada T, Furuichi K, Sakai N, Iwata Y, Yoshimoto K, Shimizu M, Kobayashi K, Matsushima K, Yokoyama H (2000) A new anti-inflammatory compound, FR167653, ameliorates crescentic glomerulonephritis in Wistar-Kyoto rats. J Am Soc Nephrol 11:1534–1541

    PubMed  CAS  Google Scholar 

  26. Wada T, Yokoyama H, Furuichi K, Kobayashi K, Harada K, Naruto M, Su SB, Akiyama, M, Mukaida N, Matsushima (1996) Intervention of crescentic glomerulonephritis by antibodies to monocyte chemotactic and activating factor (MCAF/MCP-1). FASEB J 10: 1418–1425

    PubMed  CAS  Google Scholar 

  27. Wu X, Dolecki GJ, Sherry B, Zagorski J, Lefkowith JB (1997) Chemokines are expressed in a myeloid cell-dependent fashion and mediate distinct functions in immune complex glomerulonephritis in rat. J Immunol 158: 3917–3924

    PubMed  CAS  Google Scholar 

  28. Tesch GH, Schwarting A, Kinoshita K, Lan HY, Rollins BJ, Kelley VR (1999) Monocyte chemoattractant protein-1 promotes macrophage-mediated tubular injury, but not glomerular injury, in nephrotoxic serum nephritis. J Clin Invest 103: 73–80

    Article  PubMed  CAS  Google Scholar 

  29. Lloyd CM, Minto AW, Dorf ME, Proudfoot A, Wells TN, Salant DJ, Guiterrez-Ramos JC (1997) RANTES and monocyte chemoattractant protein-1 (MCP-1) play an important role in the inflammatory phase of crescentic nephritis, but only MCP-1 is involved in crescent formation and interstitial fibrosis. J Exp Med 185: 1371–1380

    Article  PubMed  CAS  Google Scholar 

  30. Topham PS, Csizmadia V, Soler D, Hines D, Gerard CJ, Salant DJ, Hancock WW (1999) Lack of chemokine receptor CCR1 enhances Th1 responses and glomerular injury during nephrotoxic nephritis. J Clin Invest 104: 1549–1557

    PubMed  CAS  Google Scholar 

  31. Wada T, Yokoyama H, Su SB, Mukaida N, Iwano M, Dohi K, Takahashi Y, Sasaki T, Furuichi K, Segawa C et al (1996) Monitoring urinary levels of monocyte chemotactic and activating factor reflects disease activity of lupus nephritis. Kidney Int 49: 761–767

    PubMed  CAS  Google Scholar 

  32. Zoja C, Liu XH, Donadelli R, Abbate M, Testa D, Corna D, Taraboletti G, Vecchi A, Dong QG, Rollins BJ et al (1997) Renal expression of monocyte chemoattractant protein-1 in lupus autoimmune mice. J Am Soc Nephrol 8: 720–729

    PubMed  CAS  Google Scholar 

  33. Wada T, Naito T, Griffiths RC, Coffman TM, Kelley VR (1997) Systemic autoimmune nephritogenic components induce CSF-1 and TNF-alpha in MRL kidneys. Kidney Int 52: 934–941

    PubMed  CAS  Google Scholar 

  34. Wada T, Schwarting A, Kinoshita K, Naito T, Griffiths RC, Coffman TMR, Kelley VR (1999) Fas on renal parenchymal cells does not accelerate autoimmune nephritis in MRL mice. Kidney Int 55: 841–851

    Article  PubMed  CAS  Google Scholar 

  35. Tesch GH, Maifert S, Schwarting A, Rollins BJ, Kelley VR (1999) Monocyte chemoattractant protein 1-dependent leukocytic infiltrates are responsible for autoimmune disease in MRL-Fas lpr mice. J Exp Med 190: 1813–1824

    Article  PubMed  CAS  Google Scholar 

  36. Shimizu S, Nakashima H, Karube K, Ohshima K, Egashira K (2005) Monocyte chemoattractant protein-1 activates a regional Th1 immunoresponse in nephritis of MRL/lpr mice. Clin Exp Rheumatol 23: 239–242

    PubMed  CAS  Google Scholar 

  37. Perez de Lema G, Maier H, Nieto E, Vielhauer V, Luckow B, Mampaso F, Schlöndorff D (2001) Chemokine expression precedes inflammatory cell infiltration and chemokine receptor and cytokine expression during the initiation of murine lupus nephritis. J Am Soc Nephrol 12: 1369–1382

    PubMed  CAS  Google Scholar 

  38. Ishikawa S, Sato T, Abe M, Nagai S, Onai N, Yoneyama H, Zhang Y, Suzuki T, Hashimoto S, Shirai T et al (2001) Aberrant high expression of B lymphocyte chemokine (BLC/CXCL13) by C11b+CD11c+ dendritic cells in murine lupus and preferential chemotaxis of B1 cells towards BLC. J Exp Med 193: 1393–1402

    Article  PubMed  CAS  Google Scholar 

  39. Yamada M, Yagita H, Inoue H, Takanashi T, Matsuda H, Munechika E, Kanamaru Y, Shirato I, Tomino Y, Matsushima K et al (2002) Selective accumulation of CCR4+ T lymphocytes into renal tissue of patients with lupus nephritis. Arthritis Rheum 46:735–740

    Article  PubMed  Google Scholar 

  40. Inoue A, Hasegawa H, Kohno M, Ito MR, Terada M, Imai T, Yoshie O, Nose M, Fujita S (2005) Antagonist of fractalkine (CX3CL1) delays the initiation and ameliorates the progression of lupus nephritis in MRL/lpr mice. Arthritis Rheum 52: 1522–1533

    Article  PubMed  CAS  Google Scholar 

  41. Wada T, Furuichi K, Sakai N, Iwata Y, Yoshimoto K, Shimizu M, Takeda S, Takasawa K, Yoshimura M, Kida H et al (2000) Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int 58:1492–1498

    Article  PubMed  CAS  Google Scholar 

  42. Moriya R, Manivel JC, Mauer M (2004) Juxtaglomerular apparatus T-cell infiltration affects glomerular structure in Type 1 diabetic patients. Diabetologia 47: 82–88

    Article  PubMed  CAS  Google Scholar 

  43. Kato S, Luyckx VA, Ots M, Lee KW, Ziai F, Troy JL, Brenner BM, MacKenzie HS (1999) Renin-angiotensin blockade lowers MCP-1 expression in diabetic rats. Kidney Int 56: 1037–1048

    Article  PubMed  CAS  Google Scholar 

  44. Parving HH, Lehnert H, Brochner-Mortensen J, Gomis R, Andersen S, Arner P (2001) The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 345: 870–878

    Article  PubMed  CAS  Google Scholar 

  45. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, Remuzzi G, Snapinn SM, Zhang Z, Shahinfar S (2001) Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345:861–869

    Article  PubMed  CAS  Google Scholar 

  46. Nakao N, Yoshimura A, Morita H, Takada M, Kayano T, Ideura T (2003) Combination treatment of angiotensin-II receptor blocker and angiotensin-converting-enzyme inhibitor in non-diabetic renal disease (COOPERATE): a randomised controlled trial. Lancet 361: 117–124

    Article  PubMed  CAS  Google Scholar 

  47. Utimura R, Fujihara CK, Mattar AL, Malheiros DM, De Lourdes Noronha I, Zatz R (2003) Mycophenolate mofetil prevents the development of glomerular injury in experimental diabetes. Kidney Int 63: 209–216

    Article  PubMed  CAS  Google Scholar 

  48. Yozai K, Shikata K, Sasaki M, Tone A, Ohga S, Usui H, Okada S, Wada J, Nagase R, Ogawa D et al (2005) Methotrexate prevents renal injury in experimental diabetic rats via anti-inflammatory actions. J Am Soc Nephrol 16: 3326–3338

    Article  PubMed  CAS  Google Scholar 

  49. Pascual M, Theruvath T, Kawai T, Tolkoff-Rubin NM, Cosimi AB (2002) Strategies to improve long-term outcomes after renal transplantation. N Engl J Med 346: 580–590

    Article  PubMed  Google Scholar 

  50. Grone HJ, Weber C, Weber KS, Grone EF, Rabelink T, Klier CM, Wells TN, Proudfood AE, Schlöndorff D et al (1999) Met-RANTES reduces vascular and tubular damage during acute renal transplant rejection: blocking monocyte arrest and recruitment. FASEB J 13: 1371–1383

    PubMed  CAS  Google Scholar 

  51. Strehlau J, Pavlakis M, Lipman M, Shapiro M, Vasconcellos L, Harmon W, Strom TB (1997) Quantitative detection of immune activation transcripts as a diagnostic tool in kidney transplantation. Proc Natl Acad Sci USA 94: 695–700

    Article  PubMed  CAS  Google Scholar 

  52. Nagano H, Nadeau KC, Takada M, Kusaka M, Tilney NL (1997) Sequential cellular and molecular kinetics in acutely rejecting renal allografts in rats. Transplantation 63:1101–1108

    Article  PubMed  CAS  Google Scholar 

  53. Azuma H, Takahara S, Matsumoto K, Ichimaru N, Wang JD, Moriyama T, Waaga AM, Kitamura M, Otsuki Y, Okuyama A et al (2001) Hepatocyte growth factor prevents the development of chronic allograft nephropathy in rats. J Am Soc Nephrol 12: 1280–1292

    PubMed  CAS  Google Scholar 

  54. Azuma H, Wada T, Gotoh R, Furuichi K, Sakai N, Yazawa K, Yokoyama H, Katsuoka Y, Takahara S (2003) Combined therapy of FR167653 and CsA significantly prolonged animal survival in rat renal allografts. Transplantation 76: 1029–1036

    Article  PubMed  CAS  Google Scholar 

  55. Song E, Zou H, Yao Y, Proudfoot A, Antus B, Liu S, Jens L, Heemann U (2002) Early application of Met-RANTES ameliorates chronic allograft nephropathy. Kidney Int 61:676–685

    Article  PubMed  CAS  Google Scholar 

  56. Grandaliano G, Gesualdo L, Ranieri E, Monno R, Stallone G, Schena FP (1997) Monocyte chemotactic peptide-1 expression and monocyte infiltration in acute renal transplant rejection. Transplantation 63: 414–420

    Article  PubMed  CAS  Google Scholar 

  57. Suleiman M, Cury PM, Pestana JQ, Burdmann EA, Bueno V (2005) FTY720 prevents renal T-cell infiltration after ischemia/reperfusion injury. Transplant Proc 37: 373–374

    Article  PubMed  CAS  Google Scholar 

  58. Steinmetz OM, Panzer U, Kneissler U, Harendza S, Lipp M, Helmchen U, Stahl RA (2005) BCA-1/CXCL13 expression is associated with CXCR5-positive B-cell cluster formation in acute renal transplant rejection. Kidney Int 67: 1616–1621

    Article  PubMed  CAS  Google Scholar 

  59. Kerjaschki D, Regele HM, Moosberger I, Nagy-Bojarski K, Watschinger B, Soleiman A, Birner P, Krieger S, Hovorka A, Silberhumer G et al (2004) Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J Am Soc Nephrol 15: 603–612

    Article  PubMed  CAS  Google Scholar 

  60. Romagnani P, Lazzeri E, Lasagni L, Mavilia C, Beltrame C, Francalanci M, Rotondi M, Annunziato F, Maurenzig L et al (2002) IP-10 and Mig production by glomerular cells in human proliferative glomerulonephritis and regulation by nitric oxide. J Am Soc Nephrol 13: 53–64

    Article  PubMed  CAS  Google Scholar 

  61. Banas B, Wornle M, Berger T, Nelson PJ, Cohen CD, Kretzler M, Pfirstinger J, Mack M, Li M, Grone HJ, Schlöndorff D (2002) Roles of SLC/CCL21 and CCR7 in human kidney for mesangial proliferation, migration, apoptosis, and tissue homeostasis. J Immunol 168:4301–4307

    PubMed  CAS  Google Scholar 

  62. Wada T, Tomosugi N, Naito T, Yokoyama H, Kobayashi K, Mukaida N, Matsushima K (1994) Prevention of proteinuria by the administration of anti-interleukin 8 antibody in experimental acute immune complex-induced glomerulonephritis. J Exp Med 180:1135–1140

    Article  PubMed  CAS  Google Scholar 

  63. Huber TB, Reinhardt HC, Exner M, Burger JA, Kerjaschki D, Saleem MA, Pavenstadt H (2002) Expression of functional CCR and CXCR chemokine receptors in podocytes. J Immunol 168:6244–6252

    PubMed  CAS  Google Scholar 

  64. Wada T, Furuichi K, Sakai N, Iwata Y, Kitagawa K, Ishida Y, Kondo T, Hashimoto H, Ishiwata Y, Mukaida N et al (2004) Gene therapy via blockade of MCP-1 for renal fibrosis. J Am Soc Nephrol 15: 940–948

    Article  PubMed  CAS  Google Scholar 

  65. Kitagawa K, Wada T, Furuichi K, Hashimoto H, Ishiwata Y, Kuziel WA, Matsushima K, Muikad N, Yokoyama H (2004) Blockade of CCR2 ameliorates renal fibrosis. Am J Pathol 165: 237–246

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Wada, T., Yokoyama, H., Kaneko, S., Matsushima, K. (2006). Lymphocyte migration to the kidney. In: Badolato, R., Sozzani, S. (eds) Lymphocyte Trafficking in Health and Disease. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7442-X_9

Download citation

Publish with us

Policies and ethics