Skip to main content

Part of the book series: Progress in Inflammation Research ((PIR))

  • 529 Accesses

Conclusion

Lymphocyte migration to the CNS is a tightly regulated process, which involves many cellular signaling cascades and molecules. Under normal conditions, lymphocyte migration to the CNS is limited and restricted to the perivascular spaces and CSF, but is thought to be important for CNS immunosurveillance. Here, the CP is most likely the “port of entry” for CD4+ central-memory T cells. Under pathological conditions, traffic signals are altered and expression of many adhesion molecules and chemokines permit lymphocytes to enter the CNS parenchyma where they need interaction with APCs to persist. The specific molecular mechanisms differ, depending on CNS site and stimuli, and need further exploration for better understanding and novel treatments of neuroinflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Medawar PB (1948) Immunity to homologous grafted skin. III. The fate of skin homo-grafts transplanted to the brain, to subcutaneous tissue and to anterior chamber of the eye. Br J Exp Pathol 29: 58–69

    PubMed  CAS  Google Scholar 

  2. Engelhardt B, Ransohoff RM (2005) The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol 26: 485–495

    Article  PubMed  CAS  Google Scholar 

  3. Ransohoff RM, Kivisakk P, Kidd G (2003) Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 3: 569–581

    Article  PubMed  CAS  Google Scholar 

  4. Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57: 173–185

    Article  PubMed  CAS  Google Scholar 

  5. Kniesel U, Wolburg H (2000) Tight junctions of the blood-brain barrier. Cell Mol Neurobiol 20: 57–76

    Article  PubMed  CAS  Google Scholar 

  6. Allt G, Lawrenson JG (1997) Is the pial microvessel a good model for blood-brain barrier studies? Brain Res Brain Res Rev 24: 67–76

    Article  PubMed  CAS  Google Scholar 

  7. Barkalow FJ, Goodman MJ, Gerritsen ME, Mayadas TN (1996) Brain endothelium lack one of two pathways of P-selectin-mediated neutrophil adhesion. Blood 88:4585–4593

    PubMed  CAS  Google Scholar 

  8. Yong T, Zheng MQ, Linthicum DS (1997) Nicotine induces leukocyte rolling and adhesion in the cerebral microcirculation of the mouse. J Neuroimmunol 80: 158–164

    Article  PubMed  CAS  Google Scholar 

  9. Witt KA, Mark KS, Hom S, Davis TP (2003) Effects of hypoxia-reoxygenation on rat blood-brain barrier permeability and tight junctional protein expression. Am J Physiol Heart Circ Physiol 285: H2820–H2831

    PubMed  CAS  Google Scholar 

  10. Minagar A, Alexander JS (2003) Blood-brain barrier disruption in multiple sclerosis. Mult Scler 9: 540–549

    Article  PubMed  CAS  Google Scholar 

  11. Minagar A, Shapshak P, Fujimura R, Ownby R, Heyes M, Eisdorfer C (2002) The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci 202: 13–23

    Article  PubMed  CAS  Google Scholar 

  12. Butcher EC, Williams M, Youngman K, Rott L, Briskin M (1999) Lymphocyte trafficking and regional immunity. Adv Immunol 72: 209–253

    PubMed  CAS  Google Scholar 

  13. Vajkoczy P, Laschinger M, Engelhardt B (2001) Alpha4-integrin-VCAM-1 binding mediates G protein-independent capture of encephalitogenic T cell blasts to CNS white matter microvessels. J Clin Invest 108: 557–565

    Article  PubMed  CAS  Google Scholar 

  14. Proudfoot AE, Handel TM, Johnson Z, Lau EK, LiWang P, Clark-Lewis I, Borlat F, Wells TN, Kosco-Vilbois MH (2003) Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Natl Acad Sci USA 100:1885–1890

    Article  PubMed  CAS  Google Scholar 

  15. Andjelkovic AV, Spencer DD, Pachter JS (1999) Visualization of chemokine binding sites on human brain microvessels. J Cell Biol 145: 403–412

    Article  PubMed  CAS  Google Scholar 

  16. Dzenko KA, Song L, Ge S, Kuziel WA, Pachter JS (2005) CCR2 expression by brain microvascular endothelial cells is critical for macrophage transendothelial migration in response to CCL2. Microvasc Res 70: 53–64

    Article  PubMed  CAS  Google Scholar 

  17. Middleton J, Neil S, Wintle J, Clark-Lewis I, Moore H, Lam C, Auer M, Hub E, Rot A (1997) Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell 91: 385–395

    Article  PubMed  CAS  Google Scholar 

  18. Flugel A, Berkowicz T, Ritter T, Labeur M, Jenne DE, Li Z, Ellwart JW, Willem M, Lassmann H, Wekerle H (2001) Migratory activity and functional changes of green fluorescent effector cells before and during experimental autoimmune encephalomyelitis. Immunity 14: 547–560

    Article  PubMed  CAS  Google Scholar 

  19. Piccio L, Rossi B, Scarpini E, Laudanna C, Giagulli C, Issekutz AC, Vestweber D, Butcher EC, Constantin G (2002) Molecular mechanisms involved in lymphocyte recruitment in inflamed brain microvessels: critical roles for P-selectin glycoprotein ligand-1 and heterotrimeric G(i)-linked receptors. J Immunol 168: 1940–1949

    PubMed  CAS  Google Scholar 

  20. Biber K, Zuurman MW, Dijkstra IM, Boddeke HW (2002) Chemokines in the brain: neuroimmunology and beyond. Curr Opin Pharmacol 2: 63–68

    Article  PubMed  CAS  Google Scholar 

  21. Johnson-Leger C, Imhof BA (2003) Forging the endothelium during inflammation: pushing at a half-open door? Cell Tissue Res 314: 93–105

    Article  PubMed  CAS  Google Scholar 

  22. Engelhardt B, Wolburg H (2004) Mini-review: Transendothelial migration of leukocytes: through the front door or around the side of the house? Eur J Immunol 34:2955–2963

    Article  PubMed  CAS  Google Scholar 

  23. Wolburg H, Wolburg-Buchholz K, Engelhardt B (2005) Diapedesis of mononuclear cells across cerebral venules during experimental autoimmune encephalomyelitis leaves tight junctions intact. Acta Neuropathol (Berl) 109: 181–190

    Article  Google Scholar 

  24. Wekerle H, Linington C, Lassmann H, Meyermann R (1986) Cellular immune reactivity within the CNS. Trends Neurosci 9: 271–277

    Article  Google Scholar 

  25. Hickey WF (1991) Migration of hematogenous cells through the blood-brain barrier and the initiation of CNS inflammation. Brain Pathol 1: 97–105

    PubMed  CAS  Google Scholar 

  26. Carrithers MD, Visintin I, Kang SJ, Janeway CA Jr (2000) Differential adhesion molecule requirements for immune surveillance and inflammatory recruitment. Brain 123: 1092–1101

    Article  PubMed  Google Scholar 

  27. Cross AH, Cannella B, Brosnan CF, Raine CS (1990) Homing to central nervous system vasculature by antigen-specific lymphocytes. I. Localization of 14C-labeled cells during acute, chronic, and relapsing experimental allergic encephalomyelitis. Lab Invest 63:162–170

    PubMed  CAS  Google Scholar 

  28. Greter M, Heppner FL, Lemos MP, Odermatt BM, Goebels N, Laufer T, Noelle RJ, Becher B (2005) Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 11: 328–334

    Article  PubMed  CAS  Google Scholar 

  29. Petito CK, Adkins B (2005) Choroid plexus selectively accumulates T-lymphocytes in normal controls and after peripheral immune activation. J Neuroimmunol 162: 19–27

    Article  PubMed  CAS  Google Scholar 

  30. Engelhardt B, Vestweber D, Hallmann R, Schulz M (1997) E-and P-selectin are not involved in the recruitment of inflammatory cells across the blood-brain barrier in experimental autoimmune encephalomyelitis. Blood 90: 4459–4472

    PubMed  CAS  Google Scholar 

  31. Steffen BJ, Breier G, Butcher EC, Schulz M, Engelhardt B (1996) ICAM-1, VCAM-1, and MAdCAM-1 are expressed on choroid plexus epithelium but not endothelium and mediate binding of lymphocytes in vitro. Am J Pathol 148: 1819–1838

    PubMed  CAS  Google Scholar 

  32. Kivisakk P, Mahad DJ, Callahan MK, Trebst C, Tucky B, Wei T, Wu L, Baekkevold ES, Lassmann H, Staugaitis SM et al (2003) Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci USA 100: 8389–8394

    Article  PubMed  CAS  Google Scholar 

  33. Provencio JJ, Kivisakk P, Tucky BH, Luciano MG, Ransohoff RM (2005) Comparison of ventricular and lumbar cerebrospinal fluid T cells in non-inflammatory neurological disorder (NIND) patients. J Neuroimmunol 163: 179–184

    Article  PubMed  CAS  Google Scholar 

  34. Hafler DA, Fox DA, Manning ME, Schlossman SF, Reinherz EL, Weiner HL (1985) In vivo activated T lymphocytes in the peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. N Engl J Med 312: 1405–1411

    Article  PubMed  CAS  Google Scholar 

  35. Hickey WF (2001) Basic principles of immunological surveillance of the normal central nervous system. Glia 36: 118–124

    Article  PubMed  CAS  Google Scholar 

  36. McMahon EJ, Bailey SL, Castenada CV, Waldner H, Miller SD (2005) Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat Med 11:335–339

    Article  PubMed  CAS  Google Scholar 

  37. Hickey WF, Kimura H (1988) Perivascular microglial cells of the CNS are bone marrowderived and present antigen in vivo. Science 239: 290–292

    PubMed  CAS  Google Scholar 

  38. Greenwood J, Etienne-Manneville S, Adamson P, Couraud PO (2002) Lymphocyte migration into the central nervous system: implication of ICAM-1 signalling at the blood-brain barrier. Vascul Pharmacol 38: 315–322

    Article  PubMed  CAS  Google Scholar 

  39. Engelhardt B, Martin-Simonet MT, Rott LS, Butcher EC, Michie SA (1998) Adhesion molecule phenotype of T lymphocytes in inflamed CNS. J Neuroimmunol 84: 92–104

    Article  PubMed  CAS  Google Scholar 

  40. Battistini L, Piccio L, Rossi B, Bach S, Galgani S, Gasperini C, Ottoboni L, Ciabini D, Caramia MD, Bernardi G et al (2003) CD8+ T cells from patients with acute multiple sclerosis display selective increase of adhesiveness in brain venules: a critical role for P-selectin glycoprotein ligand-1. Blood 101: 4775–4782

    Article  PubMed  CAS  Google Scholar 

  41. Kerfoot SM, Kubes P (2002) Overlapping roles of P-selectin and alpha 4 integrin to recruit leukocytes to the central nervous system in experimental autoimmune encephalomyelitis. J Immunol 169: 1000–1006

    PubMed  CAS  Google Scholar 

  42. Brocke S, Piercy C, Steinman L, Weissman IL, Veromaa T (1999) Antibodies to CD44 and integrin alpha4, but not L-selectin, prevent central nervous system inflammation and experimental encephalomyelitis by blocking secondary leukocyte recruitment. Proc Natl Acad Sci USA 96: 6896–6901

    Article  PubMed  CAS  Google Scholar 

  43. Osmers I, Bullard DC, Barnum SR (2005) PSGL-1 is not required for development of experimental autoimmune encephalomyelitis. J Neuroimmunol 166: 193–196

    Article  PubMed  CAS  Google Scholar 

  44. Engelhardt B, Kempe B, Merfeld-Clauss S, Laschinger M, Furie B, Wild MK, Vestweber D (2005) P-selectin glycoprotein ligand 1 is not required for the development of experimental autoimmune encephalomyelitis in SJL and C57BL/6 mice. J Immunol 175:1267–1275

    PubMed  CAS  Google Scholar 

  45. Fife BT, Huffnagle GB, Kuziel WA, Karpus WJ (2000) CC chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis. J Exp Med 192:899–905

    Article  PubMed  CAS  Google Scholar 

  46. dos Santos AC, Barsante MM, Esteves Arantes RM, Bernard CC, Teixeira MM, Carvalho-Tavares J (2005) CCL2 and CCL5 mediate leukocyte adhesion in experimental autoimmune encephalomyelitis — an intravital microscopy study. J Neuroimmunol 162:122–129

    Article  PubMed  CAS  Google Scholar 

  47. Fife BT, Kennedy KJ, Paniagua MC, Lukacs NW, Kunkel SL, Luster AD, Karpus WJ (2001) CXCL10 (IFN-gamma-inducible protein-10) control of encephalitogenic CD4+ T cell accumulation in the central nervous system during experimental autoimmune encephalomyelitis. J Immunol 166: 7617–24

    PubMed  CAS  Google Scholar 

  48. Narumi S, Kaburaki T, Yoneyama H, Iwamura H, Kobayashi Y, Matsushima K (2002) Neutralization of IFN-inducible protein 10/CXCL10 exacerbates experimental autoimmune encephalomyelitis. Eur J Immunol 32: 1784–1791

    Article  PubMed  CAS  Google Scholar 

  49. Klein RS, Izikson L, Means T, Gibson HD, Lin E, Sobel RA, Weiner HL, Luster AD (2004) IFN-inducible protein 10/CXC chemokine ligand 10-independent induction of experimental autoimmune encephalomyelitis. J Immunol 172: 550–559

    PubMed  CAS  Google Scholar 

  50. Boztug K, Carson MJ, Pham-Mitchell N, Asensio VC, DeMartino J, Campbell IL (2002) Leukocyte infiltration, but not neurodegeneration, in the CNS of transgenic mice with astrocyte production of the CXC chemokine ligand 10. J Immunol 169: 1505–1515

    PubMed  CAS  Google Scholar 

  51. Columba-Cabezas S, Serafini B, Ambrosini E, Aloisi F (2003) Lymphoid chemokines CCL19 and CCL21 are expressed in the central nervous system during experimental autoimmune encephalomyelitis: implications for the maintenance of chronic neuroinflammation. Brain Pathol 13: 38–51

    Article  PubMed  Google Scholar 

  52. Alt C, Laschinger M, Engelhardt B (2002) Functional expression of the lymphoid chemokines CCL19 (ELC) and CCL 21 (SLC) at the blood-brain barrier suggests their involvement in G-protein-dependent lymphocyte recruitment into the central nervous system during experimental autoimmune encephalomyelitis. Eur J Immunol 32:2133–2144

    Article  PubMed  CAS  Google Scholar 

  53. Chen SC, Leach MW, Chen Y, Cai XY, Sullivan L, Wiekowski M, Dovey-Hartman BJ, Zlotnik A, Lira SA (2002) Central nervous system inflammation and neurological disease in transgenic mice expressing the CC chemokine CCL21 in oligodendrocytes. J Immunol 168: 1009–1017

    PubMed  CAS  Google Scholar 

  54. Kivisakk P, Mahad DJ, Callahan MK, Sikora K, Trebst C, Tucky B, Wujek J, Ravid R, Staugaitis SM, Lassmann H et al (2004) Expression of CCR7 in multiple sclerosis: implications for CNS immunity. Ann Neurol 55: 627–638

    Article  PubMed  CAS  Google Scholar 

  55. Steffen BJ, Butcher EC, Engelhardt B (1994) Evidence for involvement of ICAM-1 and VCAM-1 in lymphocyte interaction with endothelium in experimental autoimmune encephalomyelitis in the central nervous system in the SJL/J mouse. Am J Pathol 145:189–201

    PubMed  CAS  Google Scholar 

  56. Baron JL, Madri JA, Ruddle NH, Hashim G, Janeway CA Jr (1993) Surface expression of alpha 4 integrin by CD4 T cells is required for their entry into brain parenchyma. J Exp Med 177: 57–68

    Article  PubMed  CAS  Google Scholar 

  57. Reinhardt M, Hauff P, Linker RA, Briel A, Gold R, Rieckmann P, Becker G, Toyka KV, Maurer M, Schirner M (2005) Ultrasound derived imaging and quantification of cell adhesion molecules in experimental autoimmune encephalomyelitis (EAE) by sensitive particle acoustic quantification (SPAQ). Neuroimage 27: 267–278

    Article  PubMed  CAS  Google Scholar 

  58. Cannella B, Raine CS (1995) The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann Neurol 37: 424–435

    Article  PubMed  CAS  Google Scholar 

  59. Peterson JW, Bo L, Mork S, Chang A, Ransohoff RM, Trapp BD (2002) VCAM-1-positive microglia target oligodendrocytes at the border of multiple sclerosis lesions. J Neuropathol Exp Neurol 61: 539–546

    PubMed  Google Scholar 

  60. O’Neill JK, Butter C, Baker D, Gschmeissner SE, Kraal G, Butcher EC, Turk JL (1991) Expression of vascular addressins and ICAM-1 by endothelial cells in the spinal cord during chronic relapsing experimental allergic encephalomyelitis in the Biozzi AB/H mouse. Immunology 72: 520–525

    PubMed  CAS  Google Scholar 

  61. Engelhardt B, Laschinger M, Schulz M, Samulowitz U, Vestweber D, Hoch G (1998) The development of experimental autoimmune encephalomyelitis in the mouse requires alpha4-integrin but not alpha4beta7-integrin. J Clin Invest 102: 2096–2105

    Article  PubMed  CAS  Google Scholar 

  62. Yednock TA, Cannon C, Fritz LC, Sanchez-Madrid F, Steinman L, Karin N (1992) Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 356: 63–66

    Article  PubMed  CAS  Google Scholar 

  63. Kanwar JR, Kanwar RK, Wang D, Krissansen GW (2000) Prevention of a chronic progressive form of experimental autoimmune encephalomyelitis by an antibody against mucosal addressin cell adhesion molecule-1, given early in the course of disease progression. Immunol Cell Biol 78: 641–645

    Article  PubMed  CAS  Google Scholar 

  64. Kanwar JR, Harrison JE, Wang D, Leung E, Mueller W, Wagner N, Krissansen GW (2000) Beta7 integrins contribute to demyelinating disease of the central nervous system. J Neuroimmunol 103: 146–152

    Article  PubMed  CAS  Google Scholar 

  65. Miller DH, Khan OA, Sheremata WA, Blumhardt LD, Rice GP, Libonati MA, Willmer-Hulme AJ, Dalton CM, Miszkiel KA, O’Connor PW (2003) A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 348: 15–23

    Article  PubMed  CAS  Google Scholar 

  66. Ransohoff RM (2005) Natalizumab and PML. Nat Neurosci 8: 1275

    Article  PubMed  CAS  Google Scholar 

  67. Cannella B, Cross AH, Raine CS (1993) Anti-adhesion molecule therapy in experimental autoimmune encephalomyelitis. J Neuroimmunol 46: 43–55

    Article  PubMed  CAS  Google Scholar 

  68. Welsh CT, Rose JW, Hill KE, Townsend JJ (1993) Augmentation of adoptively transferred experimental allergic encephalomyelitis by administration of a monoclonal antibody specific for LFA-1 alpha. J Neuroimmunol 43: 161–167

    Article  PubMed  CAS  Google Scholar 

  69. Archelos JJ, Jung S, Maurer M, Schmied M, Lassmann H, Tamatani T, Miyasaka M, Toyka KV, Hartung HP (1993) Inhibition of experimental autoimmune encephalomyelitis by an antibody to the intercellular adhesion molecule ICAM-1. Ann Neurol 34: 145–154

    Article  PubMed  CAS  Google Scholar 

  70. Willenborg DO, Simmons RD, Tamatani T, Miyasaka M (1993) ICAM-1-dependent pathway is not critically involved in the inflammatory process of autoimmune encephalomyelitis or in cytokine-induced inflammation of the central nervous system. J Neuroimmunol 45: 147–154

    Article  PubMed  CAS  Google Scholar 

  71. Adamson P, Etienne S, Couraud PO, Calder V, Greenwood J (1999) Lymphocyte migration through brain endothelial cell monolayers involves signaling through endothelial ICAM-1 via a rho-dependent pathway. J Immunol 162: 2964–2973

    PubMed  CAS  Google Scholar 

  72. Lyck R, Reiss Y, Gerwin N, Greenwood J, Adamson P, Engelhardt B (2003) T-cell interaction with ICAM-1/ICAM-2 double-deficient brain endothelium in vitro: the cytoplasmic tail of endothelial ICAM-1 is necessary for transendothelial migration of T cells. Blood 102: 3675–3683

    Article  PubMed  CAS  Google Scholar 

  73. Greenwood J, Amos CL, Walters CE, Couraud PO, Lyck R, Engelhardt B, Adamson P (2003) Intracellular domain of brain endothelial intercellular adhesion molecule-1 is essential for T lymphocyte-mediated signaling and migration. J Immunol 171:2099–2108

    PubMed  CAS  Google Scholar 

  74. Bo L, Peterson JW, Mork S, Hoffman PA, Gallatin WM, Ransohoff RM, Trapp BD (1996) Distribution of immunoglobulin superfamily members ICAM-1,-2,-3, and the beta 2 integrin LFA-1 in multiple sclerosis lesions. J Neuropathol Exp Neurol 55:1060–1072

    PubMed  CAS  Google Scholar 

  75. Deckert-Schluter M, Schluter D, Hof H, Wiestler OD, Lassmann H (1994) Differential expression of ICAM-1, VCAM-1 and their ligands LFA-1, Mac-1, CD43, VLA-4, and MHC class II antigens in murine Toxoplasma encephalitis: a light microscopic and ultrastructural immunohistochemical study. J Neuropathol Exp Neurol 53: 457–468

    Article  PubMed  CAS  Google Scholar 

  76. Wolburg K, Gerhardt H, Schulz M, Wolburg H, Engelhardt B (1999) Ultrastructural localization of adhesion molecules in the healthy and inflamed choroid plexus of the mouse. Cell Tissue Res 296: 259–269

    Article  PubMed  CAS  Google Scholar 

  77. Serafini B, Columba-Cabezas S, Di Rosa F, Aloisi F (2000) Intracerebral recruitment and maturation of dendritic cells in the onset and progression of experimental autoimmune encephalomyelitis. Am J Pathol 157: 1991–2002

    PubMed  CAS  Google Scholar 

  78. Graesser D, Solowiej A, Bruckner M, Osterweil E, Juedes A, Davis S, Ruddle NH, Engelhardt B, Madri JA (2002) Altered vascular permeability and early onset of experimental autoimmune encephalomyelitis in PECAM-1-deficient mice. J Clin Invest 109:383–392

    Article  PubMed  CAS  Google Scholar 

  79. Del Maschio A, De Luigi A, Martin-Padura I, Brockhaus M, Bartfai T, Fruscella P, Adorini L, Martino G, Furlan R, De Simoni MG et al (1999) Leukocyte recruitment in the cerebrospinal fluid of mice with experimental meningitis is inhibited by an antibody to junctional adhesion molecule (JAM). J Exp Med 190: 1351–1356

    Article  PubMed  Google Scholar 

  80. Lechner F, Sahrbacher U, Suter T, Frei K, Brockhaus M, Koedel U, Fontana A (2000) Antibodies to the junctional adhesion molecule cause disruption of endothelial cells and do not prevent leukocyte influx into the meninges after viral or bacterial infection. J Infect Dis 182: 978–982

    Article  PubMed  CAS  Google Scholar 

  81. Schenkel AR, Mamdouh Z, Chen X, Liebman RM, Muller WA (2002) CD99 plays a major role in the migration of monocytes through endothelial junctions. Nat Immunol 3: 143–150

    Article  PubMed  CAS  Google Scholar 

  82. Bixel G, Kloep S, Butz S, Petri B, Engelhardt B, Vestweber D (2004) Mouse CD99 participates in T cell recruitment into inflamed skin. Blood 104: 3205–3213

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Dijkstra, I.M., Ransohoff, R.M. (2006). Lymphocyte migration to the brain. In: Badolato, R., Sozzani, S. (eds) Lymphocyte Trafficking in Health and Disease. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7442-X_8

Download citation

Publish with us

Policies and ethics