Skip to main content

Part of the book series: Progress in Inflammation Research ((PIR))

  • 597 Accesses

Conclusions

Chemokines function at all stages of leukocyte transendothelial migration. However, chemokines do not work alone. Selectins enhance chemokine-induced leukocyte transendothelial migration. Activation of p38 MAPK plays an important role in chemokine-induced transmigration. Unraveling the mechanisms of leukocyte transendothelial migration and the signaling pathways involved is now a major area of interest. Interactions between chemokines, adhesion molecules, the cytoskeleton, signaling kinases and other signaling factors need further exploration to provide new clues for novel therapies for the treatment of inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carlos TM, Harlan JM (1994) Leukocyte-endothelial adhesion molecules. Blood 84: 2068–2101

    CAS  PubMed  Google Scholar 

  2. Aplin AE, Howe A, Alahari SK, Juliano RL (1998) Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol Rev 50: 197–263

    CAS  PubMed  Google Scholar 

  3. Olson TS, Ley K (2002) Chemokines and chemokine receptors in leukocyte trafficking. Am J Physiol Regul Integr Comp Physiol 283: R7–R28

    CAS  PubMed  Google Scholar 

  4. Moser B, Wolf M, Walz A, Loetscher P (2004) Chemokines: multiple levels of leukocyte migration control. Trends Immunol 25: 75–84

    Article  CAS  PubMed  Google Scholar 

  5. Rot A, von Andrian UH (2004) Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 22: 891–928

    Article  CAS  PubMed  Google Scholar 

  6. Liu L, Kubes P (2003) Molecular mechanisms of leukocyte recruitment: organ-specific mechanisms of action. Thromb Haemost 89: 213–220

    CAS  PubMed  Google Scholar 

  7. Liu Y, Shaw SK, Ma S, Yang L, Luscinskas FW, Parkos CA (2004) Regulation of leukocyte transmigration: cell surface interactions and signaling events. J Immunol 172: 7–13

    CAS  PubMed  Google Scholar 

  8. van Buul JD, Hordijk PL (2004) Signaling in leukocyte transendothelial migration. Arterioscler Thromb Vasc Biol 24: 824–833

    PubMed  Google Scholar 

  9. Muller WA (2003) Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol 24: 326–333

    Article  Google Scholar 

  10. Doerschuk CM (2001) Mechanisms of leukocyte sequestration in inflamed lungs. Microcirculation 8: 71–88

    Article  CAS  PubMed  Google Scholar 

  11. Mizgerd JP (2002) Molecular mechanisms of neutrophil recruitment elicited by bacteria in the lungs. Semin Immunol 14: 123–132

    Article  CAS  PubMed  Google Scholar 

  12. Nourshargh S, Marelli-Berg FM (2005) Transmigration through venular walls: a key regulator of leukocyte phenotype and function. Trends Immunol 26: 157–165

    Article  CAS  PubMed  Google Scholar 

  13. Ebnet K, Vestweber D (1999) Molecular mechanisms that control leukocyte extravasation: the selectins and the chemokines. Histochem Cell Biol 112: 1–23

    Article  CAS  PubMed  Google Scholar 

  14. Moser B, Willimann K (2004) Chemokines: role in inflammation and immune surveillance. Ann Rheum Dis 63: ii84–ii89

    Article  CAS  PubMed  Google Scholar 

  15. Ono SJ, Nakamura T, Miyazaki D, Ohbayashi M, Dawson M, Toda M (2003) Chemokines: roles in leukocyte development, trafficking, and effector function. J Allergy Clin Immunol 111: 1185–1199

    Article  CAS  PubMed  Google Scholar 

  16. Rot A, Hub E, Middleton J, Pons F, Rabeck C, Thierer K, Wintle J, Wolff B, Zsak M, Dukor P (1996) Some aspects of IL-8 pathophysiology. III: Chemokine interaction with endothelial cells. J Leukoc Biol 59: 39–44

    CAS  PubMed  Google Scholar 

  17. Middleton J, Patterson AM, Gardner L, Schmutz C, Ashton BA (2002) Leukocyte extravasation: chemokine transport and presentation by the endothelium. Blood 100: 3853–3860

    Article  CAS  PubMed  Google Scholar 

  18. Campbell JJ, Hedrick J, Zlotnik A, Siani MA, Thompson DA, Butcher EC (1998) Chemokines and the arrest of lymphocytes rolling under flow conditions. Science 279: 381–384

    CAS  PubMed  Google Scholar 

  19. Rainger GE, Fisher AC, Nash GB (1997) Endothelial-borne platelet-activating factor and interleukin-8 rapidly immobilize rolling neutrophils. Am J Physiol 272: H114–H122

    CAS  PubMed  Google Scholar 

  20. Weber KS, von Hundelshausen P, Clark-Lewis I, Weber PC, Weber C (1999) Differential immobilization and hierarchical involvement of chemokines in monocyte arrest and transmigration on inflamed endothelium in shear flow. Eur J Immunol 29: 700–712

    Article  CAS  PubMed  Google Scholar 

  21. Randolph GJ, Furie MB (1995) A soluble gradient of endogenous monocyte chemoattractant protein-1 promotes the transendothelial migration of monocytes in vitro. J Immunol 155: 3610–3618

    CAS  PubMed  Google Scholar 

  22. Weber C (2003) Novel mechanistic concepts for the control of leukocyte transmigration: specialization of integrins, chemokines, and junctional molecules. J Mol Med 81: 4–19

    CAS  PubMed  Google Scholar 

  23. Middleton J, Neil S, Wintle J, Clark-Lewis I, Moore H, Lam C, Auer M, Hub E, Rot A (1997) Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell 91: 385–395

    Article  CAS  PubMed  Google Scholar 

  24. Maione TE, Gray GS, Hunt AJ, Sharpe RJ (1991) Inhibition of tumor growth in mice by an analogue of platelet factor 4 that lacks affinity for heparin and retains potent angiostatic activity. Cancer Res 51: 2077–2083

    CAS  PubMed  Google Scholar 

  25. Webb LM, Ehrengruber MU, Clark-Lewis I, Baggiolini M, Rot A (1993) Binding to heparan sulfate or heparin enhances neutrophil responses to interleukin 8. Proc Natl Acad Sci USA 90: 7158–7162

    CAS  PubMed  Google Scholar 

  26. Kuschert GS, Hoogewerf AJ, Proudfoot AE, Chung CW, Cooke RM, Hubbard RE, Wells TN, Sanderson PN (1998) Identification of a glycosaminoglycan binding surface on human interleukin-8. Biochemistry 37: 11193–11201

    Article  CAS  PubMed  Google Scholar 

  27. Luo J, Luo Z, Zhou N, Hall JW, Huang Z (1999) Attachment of C-terminus of SDF-1 enhances the biological activity of its N-terminal peptide. Biochem Biophys Res Commun 264: 42–47

    Article  CAS  PubMed  Google Scholar 

  28. Cinamon G, Grabovsky V, Winter E, Franitza S, Feigelson S, Shamri R, Dwir O, Alon R (2001) Novel chemokine functions in lymphocyte migration through vascular endothelium under shear flow. J Leukoc Biol 69: 860–866

    CAS  PubMed  Google Scholar 

  29. Johnston B, Butcher EC (2002) Chemokines in rapid leukocyte adhesion triggering and migration. Semin Immunol 14: 83–92

    Article  CAS  PubMed  Google Scholar 

  30. Laudanna C, Kim JY, Constantin G, Butcher E (2002) Rapid leukocyte integrin activation by chemokines. Immunol Rev 186: 37–46

    Article  CAS  PubMed  Google Scholar 

  31. Cuvelier SL, Patel KD (2001) Shear-dependent eosinophil transmigration on interleukin 4-stimulated endothelial cells: a role for endothelium-associated eotaxin-3. J Exp Med 194: 1699–1709

    Article  CAS  PubMed  Google Scholar 

  32. Kanwar S, Johnston B, Kubes P (1995) Leukotriene C4/D4 induces P-selectin and sialyl Lewisx-dependent alterations in leukocyte kinetics in vivo. Circ Res 77: 879–887

    CAS  PubMed  Google Scholar 

  33. Ley K, Allietta M, Bullard DC, Morgan S (1998) Importance of E-selectin for firm leukocyte adhesion in vivo. Circ Res 83: 287–294

    CAS  PubMed  Google Scholar 

  34. Kubes P, Kerfoot SM (2001) Leukocyte recruitment in the microcirculation: the rolling paradigm revisited. News Physiol Sci 16: 76–80

    CAS  PubMed  Google Scholar 

  35. Simon SI, Hu Y, Vestweber D, Smith CW (2000) Neutrophil tethering on E-selectin activates β2 integrin binding to ICAM-1 through a mitogen-activated protein kinase signal transduction pathway. J Immunol 164: 4348–4358

    CAS  PubMed  Google Scholar 

  36. Green CE, Pearson DN, Camphausen RT, Staunton DE, Simon SI (2004) Shear-dependent capping of L-selectin and P-selectin glycoprotein ligand 1 by E-selectin signals activation of high-avidity β2-integrin on neutrophils. J Immunol 172: 7780–7790

    CAS  PubMed  Google Scholar 

  37. Crockett-Torabi E, Sulenbarger B, Smith CW, Fantone JC (1995) Activation of human neutrophils through L-selectin and Mac-1 molecules. J Immunol 154: 2291–2302

    CAS  PubMed  Google Scholar 

  38. Simon SI, Burns AR, Taylor AD, Gopalan PK, Lynam EB, Sklar LA, Smith CW (1995) L-selectin (CD62L) cross-linking signals neutrophil adhesive functions via the Mac-1 (CD11b/CD18) β2-integrin. J Immunol 155: 1502–1514

    CAS  PubMed  Google Scholar 

  39. Tsang YTM, Neelamegham S, Hu Y, Berg EL, Burns AR, Smith CW, Simon SI (1997) Synergy between L-selectin signaling and chemotactic activation during neutrophil adhesion and transmigration. J Immunol 159: 4566–4577

    CAS  PubMed  Google Scholar 

  40. Hickey MJ, Forster M, Mitchell D, Kaur J, De Caigny C, Kubes P (2000) L-selectin facilitates emigration and extravascular locomotion of leukocytes during acute inflammatory responses in vivo. J Immunol 165: 7164–7170

    CAS  PubMed  Google Scholar 

  41. Grewal IS, Foellmer HG, Grewal KD, Wang H, Lee WP, Tumas D, Janeway CA Jr, Flavell RA (2001) CD62L is required on effector cells for local interactions in the CNS to cause myelin damage in experimental allergic encephalomyelitis. Immunity 14: 291–302

    Article  CAS  PubMed  Google Scholar 

  42. Cara DC, Kaur J, Forster M, McCafferty DM, Kubes P (2001) Role of p38 mitogen-activated protein kinase in chemokine-induced emigration and chemotaxis in vivo. J Immunol 167: 6552–6558

    CAS  PubMed  Google Scholar 

  43. Nick JA, Young SK, Brown KK, Avdi NJ, Arndt PG, Suratt BT, Janes MS, Henson PM, Worthen GS (2000) Role of p38 mitogen-activated protein kinase in a murine model of pulmonary inflammation. J Immunol 164: 2151–2159

    CAS  PubMed  Google Scholar 

  44. Wang Q, Doerschuk CM (2001) The p38 mitogen-activated protein kinase mediates cytoskeletal remodeling in pulmonary microvascular endothelial cells upon intracellular adhesion molecule-1 ligation. J Immunol 166: 6877–6884

    CAS  PubMed  Google Scholar 

  45. Wang Q, Yerukhimovich M, Gaarde WA, Popoff IJ, Doerschuk CM (2005) MKK3 and-6-dependent activation of p38α MAP kinase is required for cytoskeletal changes in pulmonary microvascular endothelial cells induced by ICAM-1 ligation. Am J Physiol Lung Cell Mol Physiol 288: L359–L369

    CAS  PubMed  Google Scholar 

  46. Van Wetering S, van den Berk N, van Buul JD, Mul FP, Lommerse I, Mous R, ten Klooster JP, Zwaginga JJ, Hordijk PL (2003) VCAM-1-mediated Rac signaling controls endothelial cell-cell contacts and leukocyte transmigration. Am J Physiol Cell Physiol 285: C343–C352

    PubMed  Google Scholar 

  47. Huang CK, Zhan L, Ai Y, Jongstra J (1997) LSP1 is the major substrate for mitogen-activated protein kinase-activated protein kinase 2 in human neutrophils. J Biol Chem 272: 17–19

    CAS  PubMed  Google Scholar 

  48. Klein DP, Galea S, Jongstra J (1990) The lymphocyte-specific protein LSP1 is associated with the cytoskeleton and co-caps with membrane IgM. J Immunol 145: 2967–2973

    CAS  PubMed  Google Scholar 

  49. Klein DP, Jongstra-Bilen J, Ogryzlo K, Chong R, Jongstra J (1989) Lymphocyte-specific Ca2+-binding protein LSP1 is associated with the cytoplasmic face of the plasma membrane. Mol Cell Biol 9: 3043–3048

    CAS  PubMed  Google Scholar 

  50. Jongstra-Bilen J, Janmey PA, Hartwig JH, Galea S, Jongstra J (1992) The lymphocyte-specific protein LSP1 binds to F-actin and to the cytoskeleton through its COOH-terminal basic domain. J Cell Biol 118: 1443–1453

    Article  CAS  PubMed  Google Scholar 

  51. Jongstra-Bilen J, Misener VL, Wang C, Ginzberg H, Auerbach A, Joyner AL, Downey GP, Jongstra J (2000) LSP1 modulates leukocyte populations in resting and inflamed peritoneum. Blood 96: 1827–1835

    CAS  PubMed  Google Scholar 

  52. Hannigan M, Zhan L, Ai Y, Huang CK (2001) Leukocyte-specific gene 1 protein (LSP1) is involved in chemokine KC-activated cytoskeletal reorganization in murine neutrophils in vitro. J Leukoc Biol 69: 497–504

    CAS  PubMed  Google Scholar 

  53. Liu L, Cara DC, Kaur J, Raharjo E, Mullaly SC, Jongstra-Bilen J, Jongstra J, Kubes P (2005) LSP1 is an endothelial gatekeeper of leukocyte transendothelial migration. J Exp Med 201: 409–418

    CAS  PubMed  Google Scholar 

  54. Campbell JJ, Foxman EF, Butcher EC (1997) Chemoattractant receptor cross talk as a regulatory mechanism in leukocyte adhesion and migration. Eur J Immunol 27: 2571–2578

    CAS  PubMed  Google Scholar 

  55. Heit B, Tavener S, Raharjo E, Kubes P (2002) An intracellular signaling hierarchy determines direction of migration in opposing chemotactic gradients. J Cell Biol 159: 91–102

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Liu, L., Kubes, P. (2006). Chemokines in leukocyte transendothelial migration. In: Moser, B., Letts, G.L., Neote, K. (eds) Chemokine Biology — Basic Research and Clinical Application. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7423-3_7

Download citation

Publish with us

Policies and ethics