Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cyster JG (2003) Lymphoid organ development and cell migration. Immunol Rev 195: 5–14

    Article  CAS  PubMed  Google Scholar 

  2. Petrie HT (2003) Cell migration and the control of post-natal T-cell lymphopoiesis in the thymus. Nat Rev Immunol 3: 859–866

    Article  CAS  PubMed  Google Scholar 

  3. Moser B, Wolf M, Loetscher P (2004) Chemokine: Multiple levels of leukocyte migration control. Trends Immunol 25: 75–84

    Article  CAS  PubMed  Google Scholar 

  4. Carter PH (2002) Chemokine receptor antagonism as an approach to anti-inflammatory theraphy: ‘just right’ or plain wrong? Curr Opin Chem Biol 6: 510–525

    Article  CAS  PubMed  Google Scholar 

  5. Power CA (2003) Knock out models to dissect chemokine receptor function in vivo. J Immunol Methods 273: 73–82

    Article  CAS  PubMed  Google Scholar 

  6. Houshmand P, Zlotnik A (2003) Therapeutic applications in the chemokine superfamily. Curr Opin Chem Biol 7: 457–460

    Article  CAS  PubMed  Google Scholar 

  7. Schaerli P, Willimann K, Lang AB, Lipp M, Loetscher P, Moser B (2000) CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med 192: 1553–1562

    Article  CAS  PubMed  Google Scholar 

  8. Henning G, Ohl L, Junt T, Reiterer P, Brinkmann V, Nakano H, Hohenberger W, Lipp M, Forster R (2001) CC chemokine receptor 7-dependent and-independent pathways for lymphocyte homing: modulation by FTY720. J Exp Med 194: 1875–1881

    Article  CAS  PubMed  Google Scholar 

  9. Williams IR (2004) Chemokine receptors and leukocyte trafficking in the mucosal immune system. Immunol Res 29: 283–292

    CAS  PubMed  Google Scholar 

  10. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4-and SDF-1-deficient mice. Proc Natl Acad Sci USA 95: 9448–9453

    CAS  PubMed  Google Scholar 

  11. Sallusto F, Lanzavecchia A (2000) Understanding dendritic cell and T-lymphocyte traffic through the analysis of chemokine receptor expression. Immunol Rev 177: 134–140

    Article  CAS  PubMed  Google Scholar 

  12. Youn BS, Yu KY, Oh J, Lee J, Lee TH, Broxmeyer HE (2002) Role of the CC chemokine receptor 9/TECK interaction in apoptosis. Apoptosis 7: 271–276

    Article  CAS  PubMed  Google Scholar 

  13. Dieu-Nosjean MC, Vicari A, Lebecque S, Caux C (1999). Regulation of dendritic cell trafficking: a process that involves the participation of selective chemokines. J Leukoc Biol 66: 252–262

    CAS  PubMed  Google Scholar 

  14. Martin-Fontecha A, Sebastiani S, Hopken UE, Uguccioni M, Lipp M, Lanzavecchia A, Sallusto F (2003) Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med 198: 615–662

    Article  CAS  PubMed  Google Scholar 

  15. Oppenheim JJ, Howard OMZ, Goetzl E (2000) Chemotactic factors, neuropeptides, and other ligands for seven transmembrane receptors. In: Oppenheim JJ, Feldmann M (eds): Cytokine Reference. Academic Press, London, 985–1021

    Google Scholar 

  16. Lukacs NW, Miller AL, Hogaboam CM (2003) Chemokine receptors in asthma: searching for the correct immune targets. J Immunol 170: 11–15

    Google Scholar 

  17. Papadakis KA, Landers C, Prehn J, Kouroumalis EA, Moreno ST, Gutierrez-Ramos JC, Hodge MR, Targan SR (2003) CC chemokine receptor 9 expression defines a subset of peripheral blood lymphocytes with mucosal T cell phenotype and Th1 or T-regulatory 1 cytokine profile. J Immunol 171: 159–165

    CAS  PubMed  Google Scholar 

  18. Scheerens H, Hessel E, de Waal-Malefyt R, Leach MW, Rennick D (2001) Characterization of chemokines and chemokine receptors in two murine models of inflammatory bowel disease: IL-10−/− mice and Rag-2−/− mice reconstituted with CD4+CD45RBhigh T cells. Eur J Immunol 31: 1465–1474

    Article  CAS  PubMed  Google Scholar 

  19. Lesnik P, Haskell CA, Charo IF (2003) Decreased atherosclerosis in CX3CR1−/− mice reveals a role for fractalkine in atherogenesis. J Clin Invest 111: 333–340

    Article  CAS  PubMed  Google Scholar 

  20. Garcia-Vicuna R, Gomez-Gaviro MV, Dominguez-Luis MJ, Pec MK, Gonzalez-Alvaro I, Alvaro-Gracia JM, Diaz-Gonzalez F (2004) CC and CXC chemokine receptors mediate migration, proliferation, and matrix metalloproteinase production by fibroblast-like synoviocytes from rheumatoid arthritis patients. Arthritis Rheum 50: 3866–3877

    CAS  PubMed  Google Scholar 

  21. Horuk R (1994) The interleukin-8-receptor family: from chemokines to malaria. Immunol Today 15: 169–174

    Article  CAS  PubMed  Google Scholar 

  22. Murphy PM (1994) The molecular biology of leukocyte chemoattractant receptors. Annu Rev Immunol 12: 593–633

    Article  CAS  PubMed  Google Scholar 

  23. Wu D, LaRosa GJ, Simon MI (1993) G protein-coupled signal transduction pathways for interleukin-8. Science 261: 101–103

    CAS  PubMed  Google Scholar 

  24. Kuang Y, Wu Y, Jiang H, Wu D (1996) Selective G protein coupling by C-C chemokine receptors. J Biol Chem 271: 3975–3978

    Article  CAS  PubMed  Google Scholar 

  25. Damaj BB, McColl SR, Mahana W, Crouch MF, Naccache PH (1996) Physical association of Gi2alpha with interleukin-8 receptors. J Biol Chem 271: 12783–12789

    CAS  PubMed  Google Scholar 

  26. Aragay AM, Mellado M, R-Frade JM, Martin AM, Jimenez-Sainz MC, Martínez-A C, Mayor Jr F (1998) Monocyte chemoattractant protein-1-induced CCR2B receptor desensitization mediated by the G protein-coupled receptor kinase 2. Proc Natl Acad Sci USA 95: 2985–2990

    Article  CAS  PubMed  Google Scholar 

  27. Arai H, Charo IF (1996) Differential regulation of G-protein-mediated signaling by chemokine receptors. J Biol Chem 271: 21814–21819

    CAS  PubMed  Google Scholar 

  28. Mellado M, Rodriguez-Frade JM, Vila-Coro AJ, Fernandez S, Martin de Ana A, Jones DR, Toran JL, Martinez-A C (2001) Chemokine receptor homo-or heterodimerization activates distinct signaling pathways. EMBO J 20: 2497–2507

    Article  CAS  PubMed  Google Scholar 

  29. Li Z, Jiang H, Xie W, Zhang Z, Smrcka AV, Wu D (2000) Roles of PLC-β2 and-β3 and PI3Kγ in chemoattractant-mediated signal transduction. Science 287: 1046–1049

    CAS  PubMed  Google Scholar 

  30. Carnevale KA, Cathcart MK (2001) Calcium-independent phospholipase A2 is required for human monocyte chemotaxis to monocyte chemoattractant protein 1. J Immunol 167: 3414–3421

    CAS  PubMed  Google Scholar 

  31. Bacon KB, Schall TJ, Dairaghi DJ (1998) RANTES activation of phospholipase D in Jurkat T cells: requirement of GTP-binding proteins ARF and RhoA. J Immunol 160: 1894–1900

    CAS  PubMed  Google Scholar 

  32. Franci C, Gosling J, Tsou CL, Coughlin SR, Charo IF (1996) Phosphorylation by a G protein-coupled kinase inhibits signaling and promotes internalization of the monocyte chemoattractant protein-1 receptor. Critical role of carboxyl-tail serines/threonines in receptor function J Immunol 157: 5606–5612

    CAS  PubMed  Google Scholar 

  33. Kehrl JH (1998) Heterotrimeric G protein signaling: roles in immune function and finetuning by RGS proteins. Immunity 8: 1–10

    Article  CAS  PubMed  Google Scholar 

  34. Moratz C, Harrison K, Kehrl JH (2004) Regulation of chemokine-induced lymphocyte migration by RGS proteins. Methods Enzymol 389: 15–32

    CAS  PubMed  Google Scholar 

  35. Bowman EP, Campbell JJ, Druey KM, Scheschonka A, Kehrl JH, Butcher EC (1998) Regulation of chemotactic and proadhesive responses to chemoattractant receptors by RGS (regulator of G-protein signaling) family members. J Biol Chem 273: 28040–28048

    Article  CAS  PubMed  Google Scholar 

  36. Shi GX, Harrison K, Wilson GL, Moratz C, Kehrl JH (2002) RGS13 regulates germinal center B lymphocytes responsiveness to CXC chemokine ligand (CXCL)12 and CXCL13. J Immunol 169: 2507–2515

    CAS  PubMed  Google Scholar 

  37. Lippert E, Yowe DL, Gonzalo JA, Justice JP, Webster JM, Fedyk ER, Hodge M, Miller C, Gutierrez-Ramos JC, Borrego F et al (2003) Role of regulator of G protein signaling 16 in inflammation-induced T lymphocyte migration and activation. J Immunol 171: 1542–1555

    CAS  PubMed  Google Scholar 

  38. del Pozo MA, Nieto M, Serrador JM, Sancho D, Vicente-Manzanares M, Martinez C, Sanchez-Madrid F (1998) The two poles of the lymphocyte: specialized cell compartments for migration and recruitment. Cell Adhes Común 6: 125–133

    Google Scholar 

  39. Laudanna C, Kim JY, Constantin G, Butcher E (2002) Rapid leukocyte integrin activation by chemokines. Immunol Rev 186: 37–46

    Article  CAS  PubMed  Google Scholar 

  40. Laudanna C, Campbell JJ, Butcher EC (1996) Role of Rho in chemoattractant-activated leukocyte adhesion through integrins. Science 271: 981–983

    CAS  PubMed  Google Scholar 

  41. Takesono A, Horai R, Mandai M, Dombroski D, Schwartzberg PL (2004) Requirement for Tec kinases in chemokine-induced migration and activation of Cdc42 and Rac. Curr Biol 14: 917–922

    Article  CAS  PubMed  Google Scholar 

  42. Haddad E, Zugaza JL, Louache F, Debili N, Crouin C, Schwarz K, Fischer A, Vainchenker W, Bertoglio J (2001) The interaction between Cdc42 and WASP is required for SDF-1-induced T-lymphocyte chemotaxis. Blood 97: 33–38

    CAS  PubMed  Google Scholar 

  43. Weiss-Haljiti C, Pasquali C, Ji H, Gillieron C, Chabert C, Curchod ML, Hirsch E, Ridley AJ, van Huijsduijnen RH, Camps M, Rommel C (2004) Involvement of phosphoinositide 3-kinase gamma, Rac, and PAK signaling in chemokine-induced macrophage migration. J Biol Chem 279: 43273–43284

    Article  CAS  PubMed  Google Scholar 

  44. Sasaki T, Irie-Sasaki J, Jones R, Oliveira-dos Santos A, Standford W, Bolon B, Wakeman A, Itie A, Bouchard D, Kzieradki I et al (2000) Function of PI3Kγ in thymocyte development, T cell activation, and neutrophil migration. Science 287: 1040–1046

    Article  CAS  PubMed  Google Scholar 

  45. Nombela-Arrieta C, Lacalle RA, Montoya MC, Kunisaki Y, Megias D, Marques M, Carrera AC, Manes S, Fukui Y, Martinez-A C, Stein JV (2004) Differential Requirements for DOCK2 and phosphoinositide-3-kinase gamma during T and B lymphocyte homing. Immunity 21: 429–441

    CAS  PubMed  Google Scholar 

  46. Bonacchi A, Romagnani P, Romanelli RG, Efsen E, Annunziato F, Lasagni L, Francalanci M, Serio M, Laffi G, Piunzani M et al (2001) Signal transduction by the chemokine receptor CXCR3 Activation of Ras/ERK, Src and phosphatidylinositol 3-kinase/Akt controls cell migration and proliferation in human vascular pericytes. J Biol Chem 276: 9945–9954

    Article  CAS  PubMed  Google Scholar 

  47. Jimenez C, Armas Portela R, Mellado M, Rodriguez-Frade JM, Collard J, Serrano A, Martinez-A C, Avila J, Carrera AC (2000) Role of the PI3K regulatory subunit in the control of actin organization and cell migration. J Cell Biol 151: 249–261

    Article  CAS  PubMed  Google Scholar 

  48. Smit MJ, Verdijk P, van der Raaij-Helmer EM, Navis M, Hensbergen PJ, Laurs R, Tensen CP (2003) CXCR3-mediated chemotaxis of human T cells is regulated by a Gi-and phospholipase C-dependent pathway and not via activation of MEK/p44/p42 MAPK nor Akt/PI-3 kinase. Blood 102: 1959–1965

    Article  CAS  PubMed  Google Scholar 

  49. Bacon KB, Szabo MC, Yssel H, Bolen JB, Schall TJ (1996) RANTES induces tyrosine kinase activity of stably complexed p125FAK and ZAP-70 in human T cells. J Exp Med 184: 873–882

    Article  CAS  PubMed  Google Scholar 

  50. Chan AC, Desai DM, Weiss A (1994) The role of protein tyrosine kinases and protein tyrosine phosphatases in T cell antigen receptor signal transduction. Annu Rev Immunol 12: 555–592

    Article  CAS  PubMed  Google Scholar 

  51. Ganju RK, Dutt P, Wu L, Newman W, Avraham H, Avraham S, Groopman JE (1998) β-chemokine receptor CCR5 signals via the novel tyrosine kinase RAFTK. Blood 91: 791–797

    CAS  PubMed  Google Scholar 

  52. Okigaki M, Davis C, Falasca M, Harroch S, Felsenfeld DP, Sheetz MP, Schlessinger J (2003) Pyk2 regulates multiple signaling events crucial for macrophage morphology and migration. Proc Natl Acad Sci USA 100: 10740–10745

    Article  CAS  PubMed  Google Scholar 

  53. Locati M, Otero K, Schioppa T, Signorelli P, Perrier P, Baviera S, Sozzani S, Mantovani A (2002) The chemokine system: tuning and shaping by regulation of receptor expression and coupling in polarized responses. Allergy 57: 972–982

    Article  CAS  PubMed  Google Scholar 

  54. Brühl H, Cohen CD, Linder S, Kretzler M, Schlöndorff D, Mack M (2003) Post-translational and cell type-specific regulation of CXCR4 expression by cytokines. Eur J Immunol 33: 3028–3037

    Article  PubMed  Google Scholar 

  55. Saccani A, Saccani S, Orlando S, Sironi M, Bernasconi S, Ghezzi P, Mantovani A, Sica A (2000) Redox regulation of chemokine receptor expression. Proc Natl Acad Sci USA 97: 2761–2766

    Article  CAS  PubMed  Google Scholar 

  56. Romagnani P, Annunziato F, Lasagni L, Lazzeri E, Beltrame C, Francalanci M, Uguccioni M, Galli G, Cosmi L, Maurenzig L et al (2001) Cell cycle-dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity. J Clin Invest 107: 53–63

    CAS  PubMed  Google Scholar 

  57. Szabo I, Chen XH, Xin L, Adler MW, Howard OM, Oppenheim JJ, Rogers TJ (2002) Heterologous desensitization of opioid receptors by chemokines inhibits chemotaxis and enhances the perception of pain. Proc Natl Acad Sci USA 99: 10276–10281

    Article  CAS  PubMed  Google Scholar 

  58. Limatola C, Di Bartolomeo S, Trettel F, Lauro C, Ciotti MT, Mercanti D, Castellani L, Eusebi F (2003) Expression of AMPA-type glutamate receptors in HEK cells and cerebellar granule neurons impairs CXCL2-mediated chemotaxis. J Neuroimmunol 134: 61–71

    Article  CAS  PubMed  Google Scholar 

  59. Nguyen DH, Taub D (2002) CXCR4 function requires membrane cholesterol: implications for HIV infection. J Immunol 168: 4121–4126

    CAS  PubMed  Google Scholar 

  60. Nguyen DH, Taub D (2002) Cholesterol is essential for macrophage inflammatory protein 1β binding and conformational integrity of CC chemokine. Blood 99: 4298–4306

    CAS  PubMed  Google Scholar 

  61. Mañes S, Lacalle RA, Gómez-Moutón C, Martínez-A C (2003) From rafts to crafts: membrane asymmetry in moving cells. Trends Immunol 24: 319–325

    Article  Google Scholar 

  62. Terrillon S, Bouvier M (2004) Roles of G-protein-coupled receptor dimerization. EMBO Rep 5: 30–34

    Article  CAS  PubMed  Google Scholar 

  63. Rodríguez-Frade JM, Vila-Coro A, Martin de Ana A, Albar JP, Martínez-A C, Mellado M (1999) The chemokine monocyte chemoattractant protein-1 induces functional responses through dimerization of its receptor. Proc Natl Acad Sci USA 96: 3628–3633

    PubMed  Google Scholar 

  64. Percherancier Y, Berchiche Y, Slight I, Volkmer-Engert R, Tamamura H, Fujii N, Bouvier M, Heveker N (2005) Bioluminescence resonance energy transfer reveals ligandinduced conformational changes in CXCR4 homo-and heterodimers. J Biol Chem PMID 15632118

    Google Scholar 

  65. Babcock GJ, Farzan M, Sodroski J (2003) Ligand-independent dimerization of CXCR4, a principal HIV-1 coreceptor. J Biol Chem 278: 3378–3385

    Article  CAS  PubMed  Google Scholar 

  66. Toth PT, Ren D, Miller RJ (2004) Regulation of CXCR4 dimerization by the chemokine SDF-1α and the HIV-1 coat protein gp120: a fluorescence resonance energy transfer (FRET) study. J Pharmacol Exp Ther 310: 8–17

    Article  CAS  PubMed  Google Scholar 

  67. Vila-Coro AJ, Rodríguez-Frade JM, Martín de Ana A, Moreno-Ortíz MC, Martínez-A C, Mellado M (1999) The chemokine SDF-1α triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J 13: 1699–1710

    CAS  PubMed  Google Scholar 

  68. Issafras H, Angers S, Bulenger S, Blanpain C, Parmentier M, Labbe-Jullie C, Bouvier M, Marullo S (2002) Constitutive agonist-independent CCR5 oligomerization and antibody-mediated clustering occurring at physiological levels of receptors. J Biol Chem 277: 34666–34673

    Article  CAS  PubMed  Google Scholar 

  69. Rodriguez-Frade JM, Vila-Coro A, Martin de Ana A, Nieto M, Sánchez-Madrid F, Proudfoot AEI, Wells TNC, Martínez-A C, Mellado M (1999) Similarities and differences in RANTES-and (AOP)-RANTES-triggered signals: implications for chemotaxis M. J Cell Biol 144: 755–765

    Article  CAS  PubMed  Google Scholar 

  70. Mellado M, Vila-Coro AJ, Martín de Ana A, Lucas P, Del Real G, Martínez-A C, Rodríguez-Frade JM (2000) HIV-1 infection through the CCR5 receptor is blocked by receptor dimerization. Proc Natl Acad Sci USA 97: 3388–3393

    PubMed  Google Scholar 

  71. Chelli M, Alizon M (2001) Determinants of the trans-dominant negative effect of truncated forms of the CCR5 chemokine receptor. J Biol Chem 276: 46975–46982

    Article  CAS  PubMed  Google Scholar 

  72. Hernanz-Falcón P, Rodríguez-Frade JM, Serrano A, Juan D, del Sol A, Soriano SF, Roncal F, Gómez L, Valencia A, Martínez-A C et al (2004) Identification of amino acid residues critical for chemokine receptor dimerization. Nat Immunol 5: 216–223

    Article  PubMed  Google Scholar 

  73. Trettel F, Di Bartolomeo S, Lauro C, Catalano M, Ciotti MT, Limatola C (2003) Ligand-independent CXCR2 dimerization. J Biol Chem 278: 40980–40988

    Article  CAS  PubMed  Google Scholar 

  74. El-Asmar L, Springael JY, Ballet S, Andrieu EU, Vassart G, Parmentier M (2004) Evidence for negative cooperativity within CCR5-CCR2b heterodimers. Mol Pharmacol 67: 460–469

    Article  PubMed  Google Scholar 

  75. Mellado M, Rodríguez-Frade JM, Vila-Coro AJ, Martín de Ana AM, Jones DR, Martínez-A C (2001) Chemokine receptor homo-or heterodimerization activates distinct signaling pathways: implications for increased sensitivity and dynamic range of chemotaxis. EMBO J 20: 2497–2507

    Article  CAS  PubMed  Google Scholar 

  76. Gouldson PR, Dean MK, Snell CR, Bywater RP, Gkoutos G, Reynolds CA (2001) Lipidfacing correlated mutations and dimerization in G protein coupled receptors. Protein Eng 14: 759–767

    CAS  PubMed  Google Scholar 

  77. Rodríguez-Frade JM, del Real G, Serrano A, Hernanz-Falcón P, Soriano SF, Vila-Coro AJ, Martín de Ana A, Lucas P, Prieto I, Martínez-A C et al (2004) Blocking HIV-1 infection via CCR5 and CXCR4 receptors by acting in trans on the CCR2 chemokine receptor. EMBO J 23: 66–76

    Article  PubMed  Google Scholar 

  78. Mellado M, Rodríguez-Frade JM, Vila-Coro AJ, de Ana AM, Martínez-A C (1999) Chemokine control of HIV-1 infection. Nature 400: 723–724

    Article  CAS  PubMed  Google Scholar 

  79. Wang J, Alvarez R, Roderiquez G, Guan E, Norcross MA (2004) Constitutive association of cell surface CCR5 and CXCR4 in the presence of CD4. J Cell Biochem 93: 753–760

    Article  CAS  PubMed  Google Scholar 

  80. Suzuki S, Chuang JF, Yau P, Doi RH, Chuang RY (2002) Interactions of opioid and chemokine receptors: oligomerization of mu, kappa and delta with CCR5 on immune cells. Exp Cell Res 280: 192–200

    Article  CAS  PubMed  Google Scholar 

  81. Chen C, Li J, Bot G, Szabo I, Rogers TJ, Liu-Chen LY (2004) Heterodimerization and cross-desensitization between the mu-opioid receptor and the chemokine CCR5 receptor. Eur J Pharmacol 483: 175–186

    CAS  PubMed  Google Scholar 

  82. George SR, O’Dowd BF, Lee SP (2002) G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat Rev Drug Discov 1: 808–820

    Article  CAS  PubMed  Google Scholar 

  83. Bulenger S, Marullo S, Bouvier M (2005) Emerging role of homo-and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends Pharmacol Sci 26: 131–137

    Article  CAS  PubMed  Google Scholar 

  84. Bockaert J, Pin JP (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J 18: 1723–1729

    Article  CAS  PubMed  Google Scholar 

  85. Gomes I, Jordan BA, Gupta A, Rios C, Trapaidze N, Devi LA (2001) G protein coupled receptor dimerization: implications in modulating receptor function. J Mol Med 79: 226–242

    Article  CAS  PubMed  Google Scholar 

  86. Mellado M, Rodriguez-Frade JM, Aragay A, del Real G, Martin AM, Vila-Coro AJ, Serrano A, Mayor F Jr, Martinez-A C (1998) The chemokine monocyte chemotactic protein 1 triggers Janus Kinase 2 activation and tyrosine phosphorylation of the CCR2B receptor. J Immunol 161: 805–813

    CAS  PubMed  Google Scholar 

  87. Gaudry M, Gilbert C, Barabé F, Poubelle PE, Naccache PH (1995) Activation of Lyn is a common element of the stimulation of human neutrophils by soluble and particulate agonists. Blood 86: 3567–3574

    CAS  PubMed  Google Scholar 

  88. Mueller A, Stange PG (2004) CCL3, acting via the chemokine receptor CCR5, leads to independent activation of Janus kinase 2 (JAK2) and Gi proteins. FEBS Lett 570: 126–132

    Article  CAS  PubMed  Google Scholar 

  89. Stein JV, Soriano SF, M’rini C, Nombela-Arrieta C, de Buitrago GG, Rodriguez-Frade JM, Mellado M, Girard JP, Martinez-A C (2003) CCR7-mediated physiological lymphocyte homing involves activation of a tyrosine kinase pathway. Blood 101: 38–44

    Article  CAS  PubMed  Google Scholar 

  90. Park ES, Kim H, Suh JM, Park SJ, You SH, Chung HK, Lee KW, Kwon OY, Cho BY, Kim YK et al (2000) Involvement of JAK/STAT (Janus kinase/signal transducer and activator of transcription) in the thyrotropin signaling pathway. Mol Endocrinol 14: 662–670

    CAS  PubMed  Google Scholar 

  91. Ali MS, Sayeski PP, Dirksen LB, Hayzer DJ, Marrero MB, Bernstein KE (1997) Dependence on the motif YIPP for the physical association of JAK2 kinase with the intracellular carboxy tail of the angiotensin II AT1 receptor. J Biol Chem 272: 23382–23388

    CAS  PubMed  Google Scholar 

  92. Soriano SF, Serrano A, Hernanz-Falcon P, Martín de Ana A, Monterrubio M, Martinez-A C, Rodríguez-Frade JM, Mellado M (2003) Chemokines integrate JAK/STAT and Gprotein pathways during chemotaxis and calcium flux responses. J Exp Med 33: 1328–1333

    CAS  Google Scholar 

  93. Garzon R, Soriano SF, Rodriguez-Frade JM, Gomez L, Martin de Ana A, Sanchez-Gomez M, Martinez-A C, Mellado M (2004) CXCR4-mediated suppressor of cytokine signaling upregulation inactivates growth hormone function. J Biol Chem 279: 44460–44466

    Article  CAS  PubMed  Google Scholar 

  94. Ahr B, Denizot M, Robert-Hebmann V, Brelot A, Virad-Piechaczyk M (2005) Identification of the cytoplasmic domains of CXCR4 involved in Jak2 and Stat3 phosphorylation. J Biol Chem M408481200

    Google Scholar 

  95. Alexander WS (2002) Suppressors of cytokine signaling (SOCS) in the immune system. Nat Rev Immunol 2: 1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Mellado, M., Martínez-A, C., Rodríguez-Frade, J.M. (2006). Chemokine receptor-mediated signal transduction. In: Moser, B., Letts, G.L., Neote, K. (eds) Chemokine Biology — Basic Research and Clinical Application. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7423-3_6

Download citation

Publish with us

Policies and ethics