Skip to main content

Finite Element Methods for Investigating the Moving Boundary Problem in Biological Development

  • Chapter

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 64))

Abstract

We describe two finite element algorithms which can be used to study organogenesis or organ development during biological development. Such growth can often be reduced to a free boundary problem with similarities to two-fluid flow in the presence of surface tension, though material is added at a constant growth rate to the developing organ. We use the specific case of avian limb development to discuss our algorithms

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bansch E., Finite element discretization of the Navier-Stokes equations with a free capillary surface. Numer. Math.88 (2001) no. 2, 203–235.

    MathSciNet  Google Scholar 

  2. Bernardi D., Hecht F., Ohtsuka K., Pironneau O., tA finite element software for PDE: freefem+. http://www-rocq.inria.fr/Frederic.Hecht

    Google Scholar 

  3. Borkhvardt V.G., Growth and Shaping of the Fin and Limb Buds. Russian Journal of Developmental Biology, 31 (2000) no. 3, 154–161.

    Google Scholar 

  4. Ceniceros H.D., Hou T.Y., Si H., Numerical study of Hele-Shaw flow with suction. Phys. Fluids11 (1999) no. 9, 2471–2486.

    Article  MathSciNet  Google Scholar 

  5. Crank J., Free and moving boundary problems. The Clarendon Press, Oxford University Press, New York, 1987.

    Google Scholar 

  6. Dillon R., Othmer H.G., A mathematical Model for outgrowth and spatial pattering of the vertebrate limb bud. J. Theor. Biol., 197 (1999) 295–330.

    Article  Google Scholar 

  7. Escher J., Simonett G., Classical solutions for Hele-Shaw models with surface tension. Adv. Differential Equations2 (1997) no. 4, 619–642.

    MathSciNet  Google Scholar 

  8. Forgacs G., Foty R.A., Shafrir Y., Steinberg M.S., Viscoelastic properties of living tissues: a quantitative study. Biophysical Journal74 (1998) 2227–2234.

    Google Scholar 

  9. Foty R.A., Pfleger C.M., Forgacs G., Steinberg M.S., Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development122 (1996) 1611–1620.

    Google Scholar 

  10. Hecht F., C++ et Eléments Finis, Cours DEA, Université Paris VI, http://www-rocq.inria.fr/Frederic.Hecht

    Google Scholar 

  11. Hentschel H.G.E., Glimm T., Glazier J.A., Newman S.A., Dynamical Mechanisms for Skeletal Pattern Formation in the Avian Limb, Proc. Royal Soc. B.271 (2004) 1713–1722.

    Google Scholar 

  12. Hou T.Y., Lowengrub J.S., Shelley M.J., Removing the stiffness from interfacial flows with surface tension. J. Comput. Phys.114 (1994) 312–328.

    Article  MathSciNet  Google Scholar 

  13. Hou T. Y., Lowengrub J. S., Shelley M. J., The long-time motion of vortex sheets with surface tension. Phys. Fluids9 (1997) no. 7, 1933–1954.

    Article  MathSciNet  Google Scholar 

  14. Hughes T.J.R., Liu W.K., Zimmermann T.K., Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Engrg.29 (1981) no. 3, 329–349.

    Article  MathSciNet  Google Scholar 

  15. Izaguirre J.A., Chaturvedi R., Huang C., Cickovski T., Cof J., Thomas G., Forgac G., Alber M., Hentschel G., Newman S.A., Glazier J.A., COMPUCELL, a multi-model framework for simulation of morphogenesis, Bioinformatics20 (2004) no. 7, 1129–1137.

    Article  Google Scholar 

  16. Murea C.M., Dynamic meshes generation using the relaxation method with applications to fluid-structure interaction problems. An. Univ. Bucuresti Mat.47 (1998) no. 2, 177–186.

    MATH  MathSciNet  Google Scholar 

  17. Peskin C.S., The immersed boundary method. Acta Numer.11 (2002), 479–517.

    MathSciNet  Google Scholar 

  18. Pironneau O., Hecht F., Introduction au Calcul Scientifique en C++, Cours Matrîse de Mathématiques, Ingénierie Mathématique. Université Paris VI, 2000. http://www-rocq.inria.fr/Frederic.Hecht

    Google Scholar 

  19. Newman S.A., Frisch H.L., Dynamics of skeletal pattern formation in developing chick limb. Science205 (1979), 662–668.

    Google Scholar 

  20. Newman S.A., Frisch H.L., Percus J.K. On the stationary state analysis of reaction-diffusion mechanisms for biological pattern formation. J. Theor. Biol.134, (1988) 183–197.

    MathSciNet  Google Scholar 

  21. Sethian J. A., Level set methods: evolving interfaces in geometry, fluid mechanics, computer vision and material science, Cambridge University Press, 1996.

    Google Scholar 

  22. Wolpert L., Beddington R., Brockes J., Jessell T., Lawrence P., Meyerowitz E., Principles of Development. Oxford, New York, Tokyo. Oxford University Press, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Murea, C.M., Hentschel, G. (2005). Finite Element Methods for Investigating the Moving Boundary Problem in Biological Development. In: Brezis, H., Chipot, M., Escher, J. (eds) Nonlinear Elliptic and Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications, vol 64. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7385-7_20

Download citation

Publish with us

Policies and ethics