Skip to main content

Genetic instability in human tumors

  • Chapter

Part of the book series: Experientia Supplementum ((EXS,volume 96))

Abstract

Genetic, or genomic, instability refers to a series of observed spontaneous genetic changes occurring at an accelerated rate in cell populations derived from the same ancestral precursor. This is far from a new finding, but is one that has increasingly gained more attention in the last decade due to its plausible role(s) in tumorigenesis. The majority of genetic alterations contributing to the malignant transformation are seen in growth regulatory genes, and in genes involved in cell cycle progression and arrest. Genomic instability may present itself through alterations in the length of short repeat stretches of coding and non-coding DNA, resulting in microsatellite instability. Tumors with such profiles are referred to as exhibiting a mutator phenotype, which is largely a consequence of inactivating mutations in DNA damage repair genes. Genomic instability may also, and most commonly, results from gross chromosomal changes, such as translocations or amplifications, which lead to chromosomal instability. Telomere length and telomerase activity, important in maintaining chromosomal structure and in regulating a normal cell’s lifespan, have been shown to have a function in both suppressing and facilitating malignant transformation. In addition to such direct sequence and structural changes, gene silencing through the hypermethylation of promoter regions, or increased gene expression through the hypomethylation of such regions, together, form an alternative, epigenetic mechanism leading to instability. Emerging evidence also suggests that dietary and environmental agents can further modulate the contribution of genetic instability to tumorigenesis. Currently, there is still much debate over the distinct classes of genomic instability and their specific roles in the initiation of tumor formation, as well as in the progressive transition to a cancerous state. This review examines the various molecular mechanisms that result in this genomic instability and the potential contribution of the latter to human carcinogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100: 57–70

    Article  CAS  PubMed  Google Scholar 

  2. Tomlinson IP, Novelli MR, Bodmer WF (1996) The mutation rate and cancer. Proc Natl Acad Sci USA 93: 14800–14803

    Article  CAS  PubMed  Google Scholar 

  3. Sieber OM, Heinimann K, Tomlinson IP (2003) Genomic instability—the engine of tumorigenesis? Nat Rev Cancer 3: 701–708

    Article  CAS  PubMed  Google Scholar 

  4. Loeb LA (2001) A mutator phenotype in cancer. Cancer Res 61: 3230–3239

    CAS  PubMed  Google Scholar 

  5. Loeb LA (1991) Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51: 3075–3079

    CAS  PubMed  Google Scholar 

  6. Feinberg AP (2004) The epigenetics of cancer etiology. Semin Cancer Biol 14: 427–432

    Article  CAS  PubMed  Google Scholar 

  7. Eng C, Mulligan LM (1997) Mutations of the RET proto-oncogene in the multiple endocrine neoplasia type 2 syndromes, related sporadic tumors, and hirschsprung disease. Hum Mutat 9: 97–109

    Article  CAS  PubMed  Google Scholar 

  8. von Hansemann D (1890) Virchows Arch Pathol Anat 119: 299–326

    Google Scholar 

  9. Boveri T (1914) Zur Frage der Enstehung Maligner Tumoren. Gustav Fischer, Jena. English translation: Boveri M (transl.) (1929) The Origin of Malignant Tumors. Williams and Wilkins, Baltimore

    Google Scholar 

  10. Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396: 643–649

    Article  CAS  PubMed  Google Scholar 

  11. Le Beau MM, Rowley JD (1986) Chromosomal abnormalities in leukemia and lymphoma: clinical and biological significance. Adv Hum Genet 15: 1–54

    PubMed  Google Scholar 

  12. Schwab M (1999) Oncogene amplification in solid tumors. Semin Cancer Biol 9: 319–325

    Article  CAS  PubMed  Google Scholar 

  13. Marti TM, Kunz C, Fleck O (2002) DNA mismatch repair and mutation avoidance pathways. J Cell Physiol 191: 28–41

    Article  CAS  PubMed  Google Scholar 

  14. Jacob S, Praz F (2002) DNA mismatch repair defects: role in colorectal carcinogenesis. Biochimie 84: 27–47

    Article  CAS  PubMed  Google Scholar 

  15. Peltomaki P (2001) Deficient DNA mismatch repair: a common etiologic factor for colon cancer. Hum Mol Genet 10: 735–740

    Article  CAS  PubMed  Google Scholar 

  16. Liu B, Parsons R, Papadopoulos N, Nicolaides NC, Lynch HT, Watson P, Jass JR, Dunlop M, Wyllie A, Peltomaki P et al. (1996) Analysis of mismatch repair genes in hereditary non-polyposis colorectal cancer patients. Nat Med 2: 169–174

    CAS  PubMed  Google Scholar 

  17. Marra G, Boland CR (1995) Hereditary nonpolyposis colorectal cancer: the syndrome, the genes, and historical perspectives. J Natl Cancer Inst 87: 1114–1125

    CAS  PubMed  Google Scholar 

  18. Wijnen JT, Vasen HF, Khan PM, Zwinderman AH, van der Klift H, Mulder A, Tops C, Moller P, Fodde R (1998) Clinical findings with implications for genetic testing in families with clustering of colorectal cancer. N Engl J Med 339: 511–518

    Article  CAS  PubMed  Google Scholar 

  19. Parsons R, Li GM, Longley MJ, Fang WH, Papadopoulos N, Jen J, de la Chapelle A, Kinzler KW, Vogelstein B, Modrich P (1993) Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell 75: 1227–1236

    Article  CAS  PubMed  Google Scholar 

  20. Bhattacharyya NP, Skandalis A, Ganesh A, Groden J, Meuth M (1994) Mutator phenotypes in human colorectal carcinoma cell lines. Proc Natl Acad Sci USA 91: 6319–6323

    CAS  PubMed  Google Scholar 

  21. Duval A, Hamelin R (2002) Genetic instability in human mismatch repair deficient cancers. Ann Genet 45: 71–75

    PubMed  Google Scholar 

  22. Lindahl T, Wood RD (1999) Quality control by DNA repair. Science 286: 1897–1905

    Article  CAS  PubMed  Google Scholar 

  23. Cheadle JP, Sampson JR (2003) Exposing the MYtH about base excision repair and human inherited disease. Hum Mol Genet 12 Spec No 2: R159–R165

    Article  CAS  PubMed  Google Scholar 

  24. Wood RD, Mitchell M, Sgouros J, Lindahl T (2001) Human DNA repair genes. Science 291: 1284–1289

    Article  CAS  PubMed  Google Scholar 

  25. Shibutani S, Takeshita M, Grollman AP (1991) Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349: 431–434

    Article  CAS  PubMed  Google Scholar 

  26. Al-Tassan N, Chmiel NH, Maynard J, Fleming N, Livingston AL, Williams GT, Hodges AK, Davies DR, David SS, Sampson JR et al. (2002) Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors. Nat Genet 30: 227–232

    Article  CAS  PubMed  Google Scholar 

  27. Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411: 366–74

    Article  CAS  PubMed  Google Scholar 

  28. Gu Y, Parker A, Wilson TM, Bai H, Chang DY, Lu AL (2002) Human MutY homolog, a DNA glycosylase involved in base excision repair, physically and functionally interacts with mismatch repair proteins human MutS homolog 2/human MutS homolog 6. J Biol Chem 277: 11135–11142

    CAS  PubMed  Google Scholar 

  29. Cheadle JP, Krawczak M, Thomas MW, Hodges AK, Al-Tassan N, Fleming N, Sampson JR (2002) Different combinations of biallelic APC mutation confer different growth advantages in colorectal tumors. Cancer Res 62: 363–366

    CAS  PubMed  Google Scholar 

  30. Babbs CF (1990) Free radicals and the etiology of colon cancer. Free Radic Biol Med 8: 191–200

    CAS  PubMed  Google Scholar 

  31. Dixon K, Kopras E (2004) Genetic alterations and DNA repair in human carcinogenesis. Semin Cancer Biol 14: 441–448

    Article  CAS  PubMed  Google Scholar 

  32. Komarova NL, Sengupta A, Nowak MA (2003) Mutation-selection networks of cancer initiation: tumor suppressor genes and chromosomal instability. J Theor Biol 223: 433–450

    Article  CAS  PubMed  Google Scholar 

  33. Nowak MA, Komarova NL, Sengupta A, Jallepalli PV, Shih Ie M, Vogelstein B, Lengauer C (2002) The role of chromosomal instability in tumor initiation. Proc Natl Acad Sci USA 99: 16226–16231

    Article  CAS  PubMed  Google Scholar 

  34. Rajagopalan H, Lengauer C (2004) Aneuploidy and cancer. Nature 432: 338–341

    Article  CAS  PubMed  Google Scholar 

  35. Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, Sahin A, Brinkley BR, Sen S (1998) Tumor amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20: 189–193

    Article  CAS  PubMed  Google Scholar 

  36. Lengauer C, Kinzler KW, Vogelstein B (1997) Genetic instability in colorectal cancers. Nature 386: 623–627

    Article  CAS  PubMed  Google Scholar 

  37. Hahn WC (2003) Role of telomeres and telomerase in the pathogenesis of human cancer. J Clin Oncol 21: 2034–2043

    CAS  PubMed  Google Scholar 

  38. Feng J, Funk WD, Wang SS, Weinrich SL, Avilion AA, Chiu CP, Adams RR, Chang E, Allsopp RC, Yu J et al. (1995) The RNA component of human telomerase. Science 269: 1236–1241

    CAS  PubMed  Google Scholar 

  39. Nakamura TM, Cooper JP, Cech TR (1998) Two modes of survival of fission yeast without telomerase. Science 282: 493–496

    Article  CAS  PubMed  Google Scholar 

  40. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279: 349–352

    Article  CAS  PubMed  Google Scholar 

  41. Vaziri H, Benchimol S (1998) Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr Biol 8: 279–282

    Article  CAS  PubMed  Google Scholar 

  42. Lustig AJ (1999) Crisis intervention: the role of telomerase. Proc Natl Acad Sci USA 96: 3339–3341

    Article  CAS  PubMed  Google Scholar 

  43. Jacobsen SE (1999) Gene silencing: Maintaining methylation patterns. Curr Biol 9: R617–619

    Article  CAS  PubMed  Google Scholar 

  44. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16: 6–21

    Article  CAS  PubMed  Google Scholar 

  45. Laird PW, Jaenisch R (1996) The role of DNA methylation in cancer genetic and epigenetics. Annu Rev Genet 30: 441–464

    Article  CAS  PubMed  Google Scholar 

  46. Greenblatt MS, Bennett WP, Hollstein M, Harris CC (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54: 4855–4878

    CAS  PubMed  Google Scholar 

  47. Magewu AN, Jones PA (1994) Ubiquitous and tenacious methylation of the CpG site in codon 248 of the p53 gene may explain its frequent appearance as a mutational hot spot in human cancer. Mol Cell Biol 14: 4225–4232

    CAS  PubMed  Google Scholar 

  48. Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4: 143–153

    Article  CAS  PubMed  Google Scholar 

  49. Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301: 89–92

    Article  CAS  PubMed  Google Scholar 

  50. Lund AH, van Lohuizen M (2004) Epigenetics and cancer. Genes Dev 18: 2315–2335

    Article  CAS  PubMed  Google Scholar 

  51. Richardson B (2003) Impact of aging on DNA methylation. Ageing Res Rev 2: 245–261

    CAS  PubMed  Google Scholar 

  52. Goelz SE, Vogelstein B, Hamilton SR, Feinberg AP (1985) Hypomethylation of DNA from benign and malignant human colon neoplasms. Science 228: 187–190

    CAS  PubMed  Google Scholar 

  53. Oshimo Y, Nakayama H, Ito R, Kitadai Y, Yoshida K, Chayama K, Yasui W (2003) Promoter methylation of cyclin D2 gene in gastric carcinoma. Int J Oncol 23: 1663–1670

    CAS  PubMed  Google Scholar 

  54. Akiyama Y, Maesawa C, Ogasawara S, Terashima M, Masuda T (2003) Cell-type-specific repression of the maspin gene is disrupted frequently by demethylation at the promoter region in gastric intestinal metaplasia and cancer cells. Am J Pathol 163: 1911–1919

    CAS  PubMed  Google Scholar 

  55. Hanada M, Delia D, Aiello A, Stadtmauer E, Reed JC (1993) bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood 82: 1820–1828

    CAS  PubMed  Google Scholar 

  56. Schulz WA, Elo JP, Florl AR, Pennanen S, Santourlidis S, Engers R, Buchardt M, Seifert HH, Visakorpi T (2002) Genomewide DNA hypomethylation is associated with alterations on chromosome 8 in prostate carcinoma. Genes Chromosomes Cancer 35: 58–65

    Article  CAS  PubMed  Google Scholar 

  57. Tsuda H, Takarabe T, Kanai Y, Fukutomi T, Hirohashi S (2002) Correlation of DNA hypomethylation at pericentromeric heterochromatin regions of chromosomes 16 and 1 with histological features and chromosomal abnormalities of human breast carcinomas. Am J Pathol 161: 859–866

    CAS  PubMed  Google Scholar 

  58. El-Osta A (2004) The rise and fall of genomic methylation in cancer. Leukemia 18: 233–237

    Article  CAS  PubMed  Google Scholar 

  59. Xu GL, Bestor TH, Bourc’his D, Hsieh CL, Tommerup N, Bugge M, Hulten M, Qu X, Russo JJ, Viegas-Pequignot E (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402: 187–191

    Article  CAS  PubMed  Google Scholar 

  60. Carpenter NJ, Filipovich A, Blaese RM, Carey TL, Berkel AI (1988) Variable immunodeficiency with abnormal condensation of the heterochromatin of chromosomes 1, 9, and 16. J Pediatr 112: 757–760

    CAS  PubMed  Google Scholar 

  61. Yeh A, Wei M, Golub SB, Yamashiro DJ, Murty VV, Tycko B (2002) Chromosome arm 16q in Wilms tumors: unbalanced chromosomal translocations, loss of heterozygosity, and assessment of the CTCF gene. Genes Chromosomes Cancer 35: 156–163

    Article  CAS  PubMed  Google Scholar 

  62. Qu GZ, Grundy PE, Narayan A, Ehrlich M (1999) Frequent hypomethylation in Wilms tumors of pericentromeric DNA in chromosomes 1 and 16. Cancer Genet Cytogenet 109: 34–39

    Article  CAS  PubMed  Google Scholar 

  63. Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H, Jaenisch R (2003) Induction of tumors in mice by genomic hypomethylation. Science 300: 489–492

    Article  CAS  PubMed  Google Scholar 

  64. Greger V, Passarge E, Hopping W, Messmer E, Horsthemke B (1989) Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet 83: 155–158

    Article  CAS  PubMed  Google Scholar 

  65. Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S, Samid D, Duan DS, Gnarra JR, Linehan WM et al. (1994) Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA 91: 9700–9704

    CAS  PubMed  Google Scholar 

  66. Gonzalez-Zulueta M, Bender CM, Yang AS, Nguyen T, Beart RW, Van Tornout JM, Jones PA (1995) Methylation of the 5’ CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res 55: 4531–4535

    CAS  PubMed  Google Scholar 

  67. Graff JR, Herman JG, Lapidus RG, Chopra H, Xu R, Jarrard DF, Isaacs WB, Pitha PM, Davidson NE, Baylin SB (1995) E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 55: 5195–5199

    CAS  PubMed  Google Scholar 

  68. Hiltunen MO, Alhonen L, Koistinaho J, Myohanen S, Paakkonen M, Marin S, Kosma VM, Janne J (1997) Hypermethylation of the APC (adenomatous polyposis coli) gene promoter region in human colorectal carcinoma. Int J Cancer 70: 644–648

    Article  CAS  PubMed  Google Scholar 

  69. Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP (1998) Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 72: 141–196

    CAS  PubMed  Google Scholar 

  70. Whang YE, Wu X, Suzuki H, Reiter RE, Tran C, Vessella RL, Said JW, Isaacs WB, Sawyers CL (1998) Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. Proc Natl Acad Sci USA 95: 5246–5250

    Article  CAS  PubMed  Google Scholar 

  71. Nephew KP, Huang TH (2003) Epigenetic gene silencing in cancer initiation and progression. Cancer Lett 190: 125–133

    Article  CAS  PubMed  Google Scholar 

  72. Momparler RL (2003) Cancer epigenetics. Oncogene 22: 6479–6483

    Article  CAS  PubMed  Google Scholar 

  73. Cunningham JM, Christensen ER, Tester DJ, Kim CY, Roche PC, Burgart LJ, Thibodeau SN (1998) Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res 58: 3455–3460

    CAS  PubMed  Google Scholar 

  74. Veigl ML, Kasturi L, Olechnowicz J, Ma AH, Lutterbaugh JD, Periyasamy S, Li GM, Drummond J, Modrich PL, Sedwick WD et al. (1998) Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc Natl Acad Sci USA 95: 8698–8702

    Article  CAS  PubMed  Google Scholar 

  75. Grady WM (2004) Genomic instability and colon cancer. Cancer Metastasis Rev 23: 11–27

    Article  CAS  PubMed  Google Scholar 

  76. Esteller M, Toyota M, Sanchez-Cespedes M, Capella G, Peinado MA, Watkins DN, Issa JP, Sidransky D, Baylin SB, Herman JG (2000) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis. Cancer Res 60: 2368–2371

    CAS  PubMed  Google Scholar 

  77. Nakamura M, Sakaki T, Hashimoto H, Nakase H, Ishida E, Shimada K, Konishi N (2001) Frequent alterations of the p14(ARF) and p16(INK4a) genes in primary central nervous system lymphomas. Cancer Res 61: 6335–6339

    CAS  PubMed  Google Scholar 

  78. Costello JF, Fruhwald MC, Smiraglia DJ, Rush LJ, Robertson GP, Gao X, Wright FA, Feramisco JD, Peltomaki P, Lang JC et al. (2000) Aberrant CpG-island methylation has non-random and specific-type-specific patterns. Nat Genet 24: 132–138

    Article  CAS  PubMed  Google Scholar 

  79. Kautiainen TL, Jones PA (1986) DNA methyltransferase levels in tumorigenic and nontumorigenic cells in culture. J Biol Chem 261: 1594–1598

    CAS  PubMed  Google Scholar 

  80. Issa JP, Vertino PM, Wu J, Sazawal S, Celano P, Nelkin BD, Hamilton SR, Baylin SB (1993) Increased cytosine DNA-methyltransferase activity during colon cancer progression. J Natl Cancer Inst 85: 1235–1240

    CAS  PubMed  Google Scholar 

  81. Bebenek K, Kunkel TA (2000) Streisinger revisited: DNA synthesis errors mediated by substrate misalignments. Cold Spring Harb Symp Quant Biol 65: 81–91

    Article  CAS  PubMed  Google Scholar 

  82. Issa JP (1999) Aging, DNA methylation and cancer. Crit Rev Oncol Hematol 32: 31–43

    CAS  PubMed  Google Scholar 

  83. Graff JR, Gabrielson E, Fujii H, Baylin SB, Herman JG (2000) Methylation patterns of the E-cadherin 5’ CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. J Biol Chem 275: 2727–2732

    CAS  PubMed  Google Scholar 

  84. Ramchandani S, Bhattacharya SK, Cervoni N, Szyf M (1999) DNA methylation is a reversible biological signal. Proc Natl Acad Sci USA 96: 6107–6112

    Article  CAS  PubMed  Google Scholar 

  85. Bird AP, Wolffe AP (1999) Methylation-induced repression—belts, braces, and chromatin. Cell 99: 451–454

    Article  CAS  PubMed  Google Scholar 

  86. Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21: 103–107

    Article  CAS  PubMed  Google Scholar 

  87. Feinberg AP (2001) Cancer epigenetics takes center stage. Proc Natl Acad Sci USA 98: 392–394

    CAS  PubMed  Google Scholar 

  88. Ogawa O, Eccles MR, Szeto J, McNoe LA, Yun K, Maw MA, Smith PJ, Reeve AE (1993) Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms’ tumor. Nature 362: 749–751

    Article  CAS  PubMed  Google Scholar 

  89. Thompson JS, Reese KJ, DeBaun MR, Perlman EJ, Feinberg AP (1996) Reduced expression of the cyclin-dependent kinase inhibitor gene p57KIP2 in Wilms’ tumor. Cancer Res 56: 5723–5727

    CAS  PubMed  Google Scholar 

  90. Yu Y, Xu F, Peng H, Fang X, Zhao S, Li Y, Cuevas B, Kuo WL, Gray JW, Siciliano M et al. (1999) NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc Natl Acad Sci USA 96: 214–219

    CAS  PubMed  Google Scholar 

  91. Cui H, Horon IL, Ohlsson R, Hamilton SR, Feinberg AP (1998) Loss of imprinting in normal tissue of colorectal cancer patients with microsatellite instability. Nat Med 4: 1276–1280

    Article  CAS  PubMed  Google Scholar 

  92. Breivik J, Gaudernack G (1999) Genomic instability, DNA methylation, and natural selection in colorectal carcinogenesis. Semin Cancer Biol 9: 245–254

    Article  CAS  PubMed  Google Scholar 

  93. Lindblom A (2001) Different mechanisms in the tumorigenesis of proximal and distal colon cancers. Curr Opin Oncol 13: 63–69

    Article  CAS  PubMed  Google Scholar 

  94. Bardelli A, Cahill DP, Lederer G, Speicher MR, Kinzler KW, Vogelstein B, Lengauer C (2001) Carcinogen-specific induction of genetic instability. Proc Natl Acad Sci USA 98: 5770–5775

    Article  CAS  PubMed  Google Scholar 

  95. Collins AR, Ferguson LR (2004) Nutrition and carcinogenesis. Mutat Res 551: 1–8

    CAS  PubMed  Google Scholar 

  96. Kervinen K, Sodervik H, Makela J, Lehtola J, Niemi M, Kairaluoma MI, Kesaniemi YA (1996) Is the development of adenoma and carcinoma in proximal colon related to apolipoprotein E phenotype? Gastroenterology 110: 1785–1790

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Raptis, S., Bapat, B. (2006). Genetic instability in human tumors. In: Cancer: Cell Structures, Carcinogens and Genomic Instability. Experientia Supplementum, vol 96. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7378-4_13

Download citation

Publish with us

Policies and ethics