Skip to main content

Role of monocytes and macrophages in angiogenesis

  • Chapter
Mechanisms of Angiogenesis

Part of the book series: Experientia Supplementum ((EXS,volume 94))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11: 73–91

    Article  PubMed  CAS  Google Scholar 

  2. Risau W (1998) Development and differentiation of endothelium. Kidney Int Suppl 67: S3–S6

    Article  PubMed  CAS  Google Scholar 

  3. Folkman J, Haudenschild C (1980) Angiogenesis in vitro. Nature 288: 551–556

    Article  PubMed  CAS  ISI  Google Scholar 

  4. Takakura N, Watanabe T, Suenobu S, Yamada Y, Noda T, Ito Y, Satake M, Suda T (2000) A role for hematopoietic stem cells in promoting angiogenesis. Cell 102: 199–209

    Article  PubMed  CAS  ISI  Google Scholar 

  5. Sunderkotter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C (1994) Macrophages and angiogenesis. J Leukocyte Biol 55: 410–422

    PubMed  CAS  Google Scholar 

  6. Bodolay E, Koch AE, Kim J, Szegedi G, Szekanecz Z (2002) Angiogenesis and chemokines in rheumatoid arthritis and other systemic inflammatory rheumatic diseases. J Cell Mol Med 6: 357–376

    Article  PubMed  CAS  Google Scholar 

  7. Afuwape AO, Kiriakidis S, Paleolog EM (2002) The role of the angiogenic molecule VEGF in the pathogenesis of rheumatoid arthritis. Histol Histopathol 17: 961–972

    PubMed  CAS  Google Scholar 

  8. Dahlqvist K, Umemoto EY, Brokaw JJ, Dupuis M, McDonald DM (1999) Tissue macrophages associated with angiogenesis in chronic airway inflammation in rats. Am J Respir Cell Mol Biol 20: 237–247

    PubMed  CAS  Google Scholar 

  9. Beck DW, Hart MN, Cancilla PA (1983) The role of the macrophage in microvascular regeneration following brain injury. J Neuropathol Exp Neurol 42: 601–614

    Article  PubMed  CAS  Google Scholar 

  10. Sunderkotter C, Beil W, Roth J, Sorg C (1991) Cellular events associated with inflammatory angiogenesis in the mouse cornea. Am J Pathol 138: 931–939

    PubMed  CAS  Google Scholar 

  11. DiPietro LA and Polverini PJ (1993) Role of the macrophage in the positive and negative regulation of wound neovascularization. Behring Inst Mitt 238–247

    Google Scholar 

  12. Ross R (1999) Atherosclerosis is an inflammatory disease. Am Heart J 138: S419–S420

    Article  PubMed  CAS  Google Scholar 

  13. Cliff WJ, Schoefl GI (1983) Pathological vascularization of the coronary intima. Ciba Found Symp 100: 207–221

    PubMed  CAS  Google Scholar 

  14. Kamat BR, Galli SJ, Barger AC, Lainey LL, Silverman KJ (1987) Neovascularization and coronary atherosclerotic plaque: Cinematographic localization and quantitative histologic analysis. Hum Pathol 18: 1036–1042

    Article  PubMed  CAS  Google Scholar 

  15. O’Brien ER, Garvin MR, Dev R, Stewart DK, Hinohara T, Simpson JB, Schwartz SM (1994) Angiogenesis in human coronary atherosclerotic plaques. Am J Pathol 145: 883–894

    Google Scholar 

  16. Moulton KS, Heller E, Konerding MA, Flynn E, Palinski W, Folkman J (1999) Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice. Circulation 99: 1726–1732

    PubMed  CAS  ISI  Google Scholar 

  17. Celletti FL, Waugh JM, Amabile PG, Kao EY, Boroumand S, Dake MD (2002) Inhibition of vascular endothelial growth factor-mediated neointima progression with angiostatin or paclitaxel. J Vasc Interv Radiol 13: 703–707

    Article  PubMed  Google Scholar 

  18. Moulton KS, Vakili K, Zurakowski D, Soliman M, Butterfield C, Sylvin E, Lo KM, Gillies S, Javaherian K, Folkman J (2003) Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci USA 100: 4736–4741

    Article  PubMed  CAS  Google Scholar 

  19. Amorino GP, Hoover RL (1998) Interactions of monocytic cells with human endothelial cells stimulate monocytic metalloproteinase production. Am J Pathol 152: 199–207

    PubMed  CAS  Google Scholar 

  20. von Bulow C, Hayen W, Hartmann A, Mueller-Klieser W, Allolio B, Nehls V (2001) Endothelial capillaries chemotactically attract tumour cells. J Pathol 193: 367–376

    Article  Google Scholar 

  21. Li CY, Shan S, Huang Q, Braun RD, Lanzen J, Hu K, Lin P, Dewhirst MW (2000) Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models. J Natl Cancer Inst 92: 143–147

    Article  PubMed  CAS  Google Scholar 

  22. Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82: 4–6

    Article  PubMed  CAS  Google Scholar 

  23. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407: 249–257

    Article  PubMed  CAS  ISI  Google Scholar 

  24. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29: 15–18

    PubMed  CAS  Google Scholar 

  25. Nishie A, Ono M, Shono T, Fukushi J, Otsubo M, Onoue H, Ito Y, Inamura T, Ikezaki K, Fukui M et al. (1999) Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin Cancer Res 5: 1107–1113

    PubMed  CAS  Google Scholar 

  26. Hamada I, Kato M, Yamasaki T, Iwabuchi K, Watanabe T, Yamada T, Itoyama S, Ito H, Okada K (2002) Clinical effects of tumor-associated macrophages and dendritic cells on renal cell carcinoma. Anticancer Res 22: 4281–4284

    PubMed  ISI  Google Scholar 

  27. Ohta M, Kitadai Y, Tanaka S, Yoshihara M, Yasui W, Mukaida N, Haruma K, Chayama K (2003) Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human gastric carcinomas. Int J Oncol 22: 773–778

    PubMed  CAS  Google Scholar 

  28. Chen JJ, Yao PL, Yuan A, Hong TM, Shun CT, Kuo ML, Lee YC, Yang PC (2003) Up-regulation of tumor interleukin-8 expression by infiltrating macrophages: Its correlation with tumor angiogenesis and patient survival in non-small cell lung cancer. Clin Cancer Res 9: 729–737

    PubMed  CAS  Google Scholar 

  29. Zhang T, Koide N, Wada Y, Tsukioka K, Takayama K, Kono T, Kitahara H, Amano J (2003) Significance of monocyte chemotactic protein-1 and thymidine phosphorylase in angiogenesis of human cardiac myxoma. Circ J 67: 54–60

    Article  PubMed  CAS  Google Scholar 

  30. Torisu H, Ono M, Kiryu H, Furue M, Ohmoto Y, Nakayama J, Nishioka Y, Sone S, Kuwano M (2000) Macrophage infiltration correlates with tumor stage and angiogenesis in human malignant melanoma: possible involvement of TNFalpha and IL-1alpha. Int J Cancer 85: 182–188

    PubMed  CAS  Google Scholar 

  31. Nesbit M, Schaider H, Miller TH, Herlyn M (2001) Low-level monocyte chemoattractant protein-1 stimulation of monocytes leads to tumor formation in nontumorigenic melanoma cells. J Immunol 166: 6483–6490

    PubMed  CAS  Google Scholar 

  32. Kataki A, Scheid P, Piet M, Marie B, Martinet N, Martinet Y, Vignaud JM (2002) Tumor infiltrating lymphocytes and macrophages have a potential dual role in lung cancer by supporting both host-defense and tumor progression. J Lab Clin Med 140: 320–328

    Article  PubMed  Google Scholar 

  33. Schaper W, Ito WD (1996) Molecular mechanisms of coronary collateral vessel growth. Circ Res 79: 911–919

    PubMed  CAS  Google Scholar 

  34. Heilmann C, Beyersdorf F, Lutter G (2002) Collateral growth: Cells arrive at the construction site. Cardiovasc Surg 10: 570–578

    Article  PubMed  Google Scholar 

  35. Arras M, Mollnau H, Strasser R, Wenz R, Ito WD, Schaper J, Schaper W (1998) The delivery of angiogenic factors to the heart by microsphere therapy. Nat Biotechnol 16: 159–162

    Article  PubMed  CAS  Google Scholar 

  36. Voskuil M, van Royen N, Hoefer IE, Seidler R, Guth BD, Bode C, Schaper W, Piek JJ, Buschmann IR (2003) Modulation of collateral artery growth in a porcine hindlimb ligation model using MCP-1. Am J Physiol-Heart Circ Physiol 284: H1422–H1428

    PubMed  CAS  Google Scholar 

  37. Pipp F, Heil M, Issbrucker K, Ziegelhoeffer T, Martin S, van den HJ, Weich H, Fernandez B, Golomb G, Carmeliet P et al. (2003) VEGFR-1-selective VEGF homologue PlGF is arteriogenic: evidence for a monocyte-mediated mechanism. Circ Res 92: 378–385

    Article  PubMed  CAS  Google Scholar 

  38. Waltenberger J, Lange J, Kranz A (2000) Vascular endothelial growth factor-A-induced chemotaxis of monocytes is attenuated in patients with diabetes mellitus: A potential predictor for the individual capacity to develop collaterals. Circulation 102: 185–190

    PubMed  CAS  ISI  Google Scholar 

  39. Ferrara N (2002) Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol 29: 10–14

    PubMed  CAS  Google Scholar 

  40. Clauss M, Gerlach M, Gerlach H, Brett J, Wang F, Familletti PC, Pan YC, Olander JV, Connoll DT, Stern D (1990) Vascular permeability factor: A tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. J Exp Med 172: 1535–1545

    Article  PubMed  CAS  Google Scholar 

  41. Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D (1996) Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87: 3336–3343

    PubMed  CAS  ISI  Google Scholar 

  42. Sawano A, Iwai S, Sakurai Y, Ito M, Shitara K, Nakahata T, Shibuya M (2001) Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocytemacrophages in humans. Blood 97: 785–791

    Article  PubMed  CAS  ISI  Google Scholar 

  43. Waltham M, Burnand KG, Collins M, Smith A (2000) Vascular endothelial growth factor and basic fibroblast growth factor are found in resolving venous thrombi. J Vasc Surg 32: 988–996

    Article  PubMed  CAS  Google Scholar 

  44. Waltham M, Burnand KG, Collins M, McGuinness CL, Singh I, Smith A (2003) Vascular endothelial growth factor enhances venous thrombus recanalisation and organisation. Thromb Haemost 89: 169–176

    PubMed  CAS  Google Scholar 

  45. Duyndam MC, Hilhorst MC, Schluper HM, Verheul HM, van Diest PJ, Kraal G, Pinedo HM, Boven E (2002) Vascular endothelial growth factor-165 overexpression stimulates angiogenesis and induces cyst formation and macrophage infiltration in human ovarian cancer xenografts. Am J Pathol 160: 537–548

    PubMed  CAS  Google Scholar 

  46. Constant JS, Feng JJ, Zabel DD, Yuan H, Suh DY, Scheuenstuhl H, Hunt TK, Hussain MZ (2000) Lactate elicits vascular endothelial growth factor from macrophages: a possible alternative to hypoxia. Wound Repair Regen 8: 353–360

    Article  PubMed  CAS  Google Scholar 

  47. Unemori EN, Lewis M, Constant J, Arnold G, Grove BH, Normand J, Deshpande U, Salles A, Pickford LB, Erikson ME et al. (2000) Relaxin induces vascular endothelial growth factor expression and angiogenesis selectively at wound sites. Wound Repair Regen 8: 361–370

    Article  PubMed  CAS  Google Scholar 

  48. Itaya H, Imaizumi T, Yoshida H, Koyama M, Suzuki S, Satoh K (2001) Expression of vascular endothelial growth factor in human monocyte/macrophages stimulated with lipopolysaccharide. Thromb Haemost 85: 171–176

    PubMed  CAS  Google Scholar 

  49. Mukutmoni M, Hubbard NE, Erickson KL (2001) Prostaglandin E(2) modulation of vascular endothelial growth factor production in murine macrophages. Prostaglandins Leukot Essent Fatty Acids 65: 123–131

    Article  PubMed  CAS  Google Scholar 

  50. Kasama T, Shiozawa F, Kobayashi K, Yajima N, Hanyuda M, Takeuchi HT, Mori Y, Negishi M, Ide H, Adachi M (2001) Vascular endothelial growth factor expression by activated synovial leukocytes in rheumatoid arthritis: critical involvement of the interaction with synovial fibroblasts. Arthritis Rheum 44: 2512–2524

    Article  PubMed  CAS  Google Scholar 

  51. Barbera-Guillem E, Nyhus JK, Wolford CC, Friece CR, Sampsel JW (2002) Vascular endothelial growth factor secretion by tumor-infiltrating macrophages essentially supports tumor angiogenesis, and IgG immune complexes potentiate the process. Cancer Res 62: 7042–7049

    PubMed  CAS  ISI  Google Scholar 

  52. Weber KS, Nelson PJ, Grone HJ, Weber C (1999) Expression of CCR2 by endothelial cells: Implications for MCP-1 mediated wound injury repair and in vivo inflammatory activation of endothelium. Arterioscler Thromb Vasc Biol 19: 2085–2093

    PubMed  CAS  Google Scholar 

  53. Salcedo R, Ponce ML, Young HA, Wasserman K, Ward JM, Kleinman HK, Oppenheim JJ, Murphy WJ (2000) Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood 96: 34–40

    PubMed  CAS  ISI  Google Scholar 

  54. Goede V, Brogelli L, Ziche M, Augustin HG (1999) Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1. Int J Cancer 82: 765–770

    Article  PubMed  CAS  Google Scholar 

  55. Liss C, Fekete MJ, Hasina R, Lam CD, Lingen MW (2001) Paracrine angiogenic loop between head-and-neck squamous-cell carcinomas and macrophages. Int J Cancer 93: 781–785

    Article  PubMed  CAS  Google Scholar 

  56. Ohta M, Kitadai Y, Tanaka S, Yoshihara M, Yasui W, Mukaida N, Haruma K, Chayama K (2002) Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human esophageal squamous cell carcinomas. Int J Cancer 102: 220–224

    Article  PubMed  CAS  Google Scholar 

  57. Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K, Koike M, Inadera H, Matsushima K (2000) Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis and survival in human breast cancer. Clin Cancer Res 6: 3282–3289

    PubMed  CAS  Google Scholar 

  58. Marumo T, Schini-Kerth VB, Busse R (1999) Vascular endothelial growth factor activates nuclear factor-kappaB and induces monocyte chemoattractant protein-1 in bovine retinal endothelial cells. Diabetes 48: 1131–1137

    Article  PubMed  CAS  ISI  Google Scholar 

  59. Lakshminarayanan V, Lewallen M, Frangogiannis NG, Evans AJ, Wedin KE, Michael LH, Entman ML (2001) Reactive oxygen intermediates induce monocyte chemotactic protein-1 in vascular endothelium after brief ischemia. Am J Pathol 159: 1301–1311

    PubMed  CAS  Google Scholar 

  60. Low QE, Drugea IA, Duffner LA, Quinn DG, Cook DN, Rollins BJ, Kovacs EJ, DiPietro LA (2001) Wound healing in Mip-1alpha(-/-) and Mcp-1(-/-) mice. Am J Pathol 159: 457–463

    PubMed  CAS  Google Scholar 

  61. Humphries J, McGuinness CL, Smith A, Waltham M, Poston R, Burnand KG (1999) Monocyte chemotactic protein-1 (MCP-1) accelerates the organization and resolution of venous thrombi. J Vasc Surg 30: 894–899

    Article  PubMed  CAS  Google Scholar 

  62. Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Elner VM, Elner SG, Strieter RM (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258: 1798–1801

    Article  PubMed  CAS  ISI  Google Scholar 

  63. Wakefield TW, Linn MJ, Henke PK, Kadell AM, Wilke CA, Wrobleski SK, Sarkar M, Burdic MD, Myers DD, Strieter RM (1999) Neovascularization during venous thrombosis organization: a preliminary study. J Vasc Surg 30: 885–892

    Article  PubMed  CAS  Google Scholar 

  64. Hu DE, Hori Y, Fan TP (1993) Interleukin-8 stimulates angiogenesis in rats. Inflammation 17: 135–143

    Article  PubMed  CAS  ISI  Google Scholar 

  65. Petzelbauer P, Watson CA, Pfau SE, Pober JS (1995) IL-8 and angiogenesis: Evidence that human endothelial cells lack receptors and do not respond to IL-8 in vitro. Cytokine 7: 267–272

    Article  PubMed  CAS  ISI  Google Scholar 

  66. Boisvert WA, Santiago R, Curtiss LK, Terkeltaub RA (1998) A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptor-deficient mice. J Clin Invest 101: 353–363

    Article  PubMed  CAS  Google Scholar 

  67. Bando H, Toi M (2000) Tumor angiogenesis, macrophages and cytokines. Adv Exp Med Biol 476: 267–284

    PubMed  CAS  Google Scholar 

  68. Bussolino F, Colotta F, Bocchietto E, Guglielmetti A, Mantovani A (1993) Recent developments in the cell biology of granulocyte-macrophage colony-stimulating factor and granulocyte colonystimulating factor: Activities on endothelial cells. Int J Clin Lab Res 23: 8–12

    Article  PubMed  CAS  Google Scholar 

  69. Schreiber AB, Winkler ME, Derynck R (1986) Transforming growth factor-alpha: a more potent angiogenic mediator than epidermal growth factor. Science 232: 1250–1253

    Article  PubMed  CAS  ISI  Google Scholar 

  70. Kitamura K, Kasuya K, Tsuchida A, Mimuro A, Inoue K, Aoki T, Aoki T, Koyanagi Y (2003) Immunohistochemical analysis of transforming growth factor beta in gallbladder cancer. Oncol Rep 10: 327–332

    PubMed  CAS  Google Scholar 

  71. Tuxhorn JA, McAlhany SJ, Yang F, Dang TD, Rowley DR (2002) Inhibition of transforming growth factor-beta activity decreases angiogenesis in a human prostate cancer-reactive stroma xenograft model. Cancer Res 62: 6021–6025

    PubMed  CAS  ISI  Google Scholar 

  72. Mornex JF, Martinet Y, Yamauchi K, Bitterman PB, Grotendorst GR, Chytil-Weir A, Martin GR, Crystal RG (1986) Spontaneous expression of the c-sis gene and release of a platelet-derived growth factorlike molecule by human alveolar macrophages. J Clin Invest 78: 61–66

    Article  PubMed  CAS  Google Scholar 

  73. Li H, Fredriksson L, Li X, Eriksson U (2003) PDGF-D is a potent transforming and angiogenic growth factor. Oncogene 22: 1501–1510

    Article  PubMed  CAS  ISI  Google Scholar 

  74. De Marchis F, Ribatti D, Giampietri C, Lentini A, Faraone D, Scoccianti M, Capogrossi MC, Facchiano A (2002) Platelet-derived growth factor inhibits basic fibroblast growth factor angiogenic properties in vitro and in vivo through its alpha receptor. Blood 99: 2045–2053

    Article  PubMed  Google Scholar 

  75. Amano H, Hayashi I, Endo H, Kitasato H, Yamashina S, Maruyama T, Kobayashi M, Satoh K, Narita M, Sugimoto Y et al. (2003) Host prostaglandin E(2)-EP3 signaling regulates tumor-associated angiogenesis and tumor growth. J Exp Med 197: 221–232

    Article  PubMed  CAS  Google Scholar 

  76. DiPietro LA, Polverini PJ (1993) Angiogenic macrophages produce the angiogenic inhibitor thrombospondin 1. Am J Pathol 143: 678–684

    PubMed  CAS  Google Scholar 

  77. Cornelius LA, Nehring LC, Harding E, Bolanowski M, Welgus HG, Kobayashi DK, Pierce RA, Shapiro SD (1998) Matrix metalloproteinases generate angiostatin: Effects on neovascularization. J Immunol 161: 6845–6852

    PubMed  CAS  Google Scholar 

  78. Gorrin-Rivas MJ, Arii S, Furutani M, Mizumoto M, Mori A, Hanaki K, Maeda M, Furuyama H, Kondo Y, Imamura M (2000) Mouse macrophage metalloelastase gene transfer into a murine melanoma suppresses primary tumor growth by halting angiogenesis. Clin Cancer Res 6: 1647–1654

    PubMed  CAS  Google Scholar 

  79. O’Connor DS, Schechner JS, Adida C, Mesri M, Rothermel AL, Li F, Nath AK, Pober JS, Altieri DC (2000) Control of apoptosis during angiogenesis by survivin expression in endothelial cells. Am J Pathol 156: 393–398

    Google Scholar 

  80. Choi ME, Ballermann BJ (1995) Inhibition of capillary morphogenesis and associated apoptosis by dominant negative mutant transforming growth factor-beta receptors. J Biol Chem 270: 21144–21150

    Article  PubMed  CAS  Google Scholar 

  81. Kaplan HJ, Leibole MA, Tezel T, Ferguson TA (1999) Fas ligand (CD95 ligand) controls angiogenesis beneath the retina. Nat Med 5: 292–297

    Article  PubMed  CAS  Google Scholar 

  82. Lambooij AC, Kliffen M, Mooy CM, Kuijpers RW (2001) Role of Fas-ligand in age-related maculopathy not established. Am J Ophthalmol 132: 437–439

    Article  PubMed  CAS  Google Scholar 

  83. Barreiro R, Schadlu R, Herndon J, Kaplan HJ, Ferguson TA (2003) The role of Fas-FasL in the development and treatment of ischemic retinopathy. Invest Ophthalmol Visual Sci 44: 1282–1286

    Article  Google Scholar 

  84. Biancone L, Martino AD, Orlandi V, Conaldi PG, Toniolo A, Camussi G (1997) Development of inflammatory angiogenesis by local stimulation of Fas in vivo. J Exp Med 186: 147–152

    Article  PubMed  CAS  Google Scholar 

  85. Meyer GT, Matthias LJ, Noack L, Vadas MA, Gamble JR (1997) Lumen formation during angiogenesis in vitro involves phagocytic activity, formation and secretion of vacuoles, cell death and capillary tube remodelling by different populations of endothelial cells. Anat Rec 249: 327–340

    Article  PubMed  CAS  Google Scholar 

  86. Diez-Roux G, Argilla M, Makarenkova H, Ko K, Lang RA (1999) Macrophages kill capillary cells in G1 phase of the cell cycle during programmed vascular regression. Development 126: 2141–2147

    PubMed  CAS  ISI  Google Scholar 

  87. Shapiro SD (1998) Matrix metalloproteinase degradation of extracellular matrix: Biological consequences. Curr Opin Cell Biol 10: 602–608

    Article  PubMed  CAS  Google Scholar 

  88. Cox G, O’Byrne KJ (2001) Matrix metalloproteinases and cancer. Anticancer Res 21: 4207–4219

    PubMed  CAS  ISI  Google Scholar 

  89. Heissig B, Hattori K, Friedrich M, Rafii S, Werb Z (2003) Angiogenesis: Vascular remodeling of the extracellular matrix involves metalloproteinases. Curr Opin Hematol 10: 136–141

    Article  PubMed  CAS  Google Scholar 

  90. Shapiro SD (1999) Diverse roles of macrophage matrix metalloproteinases in tissue destruction and tumor growth. Thromb Haemost 82: 846–849

    PubMed  CAS  Google Scholar 

  91. Werb Z, Vu TH, Rinkenberger JL, Coussens LM (1999) Matrix-degrading proteases and angiogenesis during development and tumor formation. APMIS 107: 11–18

    Article  PubMed  CAS  ISI  Google Scholar 

  92. Werb Z, Bainton DF, Jones PA (1980) Degradation of connective tissue matrices by macrophages. III. Morphological and biochemical studies on extracellular, pericellular, and intracellular events in matrix proteolysis by macrophages in culture. J Exp Med 152: 1537–1553

    Article  PubMed  CAS  Google Scholar 

  93. Murphy G, Gavrilovic J (1999) Proteolysis and cell migration: creating a path? Curr Opin Cell Biol 11: 614–621

    Article  PubMed  CAS  Google Scholar 

  94. Madlener M, Parks WC, Werner S (1998) Matrix metalloproteinases (MMPs) and their physiological inhibitors (TIMPs) are differentially expressed during excisional skin wound repair. Exp Cell Res 242: 201–210

    Article  PubMed  CAS  Google Scholar 

  95. Nicosia RF, McCormick JF, Bielunas J (1984) The formation of endothelial webs and channels in plasma clot culture. Scan Electron Microsc 793–799

    Google Scholar 

  96. Nehls V, Herrmann R, Huhnken M (1998) Guided migration as a novel mechanism of capillary network remodeling is regulated by basic fibroblast growth factor. Histochem Cell Biol 109: 319–329

    Article  PubMed  CAS  Google Scholar 

  97. Moldovan NI, Goldschmidt-Clermont PJ, Parker-Thornburg J, Shapiro SD, Kolattukudy PE (2000) Contribution of monocytes/macrophages to compensatory neovascularization: the drilling of metalloelastase-positive tunnels in ischemic myocardium. Circ Res 87: 378–384

    PubMed  CAS  Google Scholar 

  98. Kolattukudy PE, Quach T, Bergese S, Breckenridge S, Hensley J, Altschuld R, Gordillo G, Klenotic S, Orosz C, Parker-Thornburg J (1998) Myocarditis induced by targeted expression of the Mcp-1 gene in murine cardiac muscle. Am J Pathol 152: 101–111

    PubMed  CAS  Google Scholar 

  99. Martire A, Fernandez B, Buehler A, Strohm C, Schaper J, Zimmermann R, Kolattukudy PE, Schaper W (2003) Cardiac overexpression of monocyte chemoattractant protein-1 in transgenic mice mimics ischemic preconditioning through Sapk/Jnk1/2 activation. Cardiovasc Res 57: 523–534

    Article  PubMed  CAS  Google Scholar 

  100. Castellucci M, Montesano R (1988) Phorbol ester stimulates macrophage invasion of fibrin matrices. Anat Rec 220: 1–10

    Article  PubMed  CAS  Google Scholar 

  101. Monet-Kuntz C, Cuvelier A, Sarafan N, Martin JP (1997) Metalloelastase expression in a mouse macrophage cell line—regulation by 4beta-phorbol 12-myristate 13-acetate, lipopolysaccharide and dexamethasone. Eur J Biochem 247: 588–595

    Article  PubMed  CAS  Google Scholar 

  102. Anghelina M, Schmeisser A, Krishnan P, Moldovan L, Strasser RH, Moldovan NI (2002) Migration of monocytes/macrophages in vitro and in vivo is accompanied by MMP12-dependent tunnels formation and by neo-vascularization. Cold Spring Harb Symp Quant Biol LXVII: 209–215

    Article  Google Scholar 

  103. Nabeshima K, Inoue T, Shimao Y, Kataoka H, Koono M (1999) Cohort migration of carcinoma cells: Differentiated colorectal carcinoma cells move as coherent cell clusters or sheets. Histol Histopathol 14: 1183–1197

    PubMed  CAS  Google Scholar 

  104. Simon DI, Ezratty AM, Francis SA, Rennke H, Loscalzo J (1993) Fibrin(ogen) is internalized and degraded by activated human monocytoid cells via Mac-1 (CD11b/CD18): a nonplasmin fibrinolytic pathway. Blood 82: 2414–2422

    PubMed  CAS  ISI  Google Scholar 

  105. Shipley JM, Wesselschmidt RL, Kobayashi DK, Ley TJ, Shapiro SD (1996) Metalloelastase is Role of monocytes and macrophages in angiogenesis 143 required for macrophage-mediated proteolysis and matrix invasion in mice. Proc Natl Acad Sci USA 93: 3942–3946

    Article  PubMed  CAS  Google Scholar 

  106. Curci JA, Liao S, Huffman MD, Shapiro SD, Thompson RW (1998) Expression and localization of macrophage elastase (matrix metalloproteinase-12) in abdominal aortic aneurysms. J Clin Invest 102: 1900–1910

    Article  PubMed  CAS  Google Scholar 

  107. Hinek A, Boyle J, Rabinovitch M (1992) Vascular smooth muscle cell detachment from elastin and migration through elastic laminae is promoted by chondroitin sulfate-induced “shedding” of the 67-kDa cell surface elastin binding protein. Exp Cell Res 203: 344–353

    Article  PubMed  CAS  Google Scholar 

  108. Gunsilius E, Duba HC, Petzer AL, Kahler CM, Grunewald K, Stockhammer G, Gabl C, Dirnhofer S, Clausen J, Gastl G (2000) Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet 355: 1688–1691

    Article  PubMed  CAS  ISI  Google Scholar 

  109. Grant MB, May WS, Caballero S, Brown GA, Guthrie SM, Mames RN, Byrne BJ, Vaught T, Spoerri PE, Peck AB, Scott EW (2002) Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med 8: 607–612

    Article  PubMed  CAS  Google Scholar 

  110. Feigl W, Susani M, Ulrich W, Matejka M, Losert U, Sinzinger H (1985) Organisation of experimental thrombosis by blood cells. Evidence of the transformation of mononuclear cells into myofibroblasts and endothelial cells. Virchows Arch A Pathol Anat Histopathol 406: 133–148

    Article  PubMed  CAS  Google Scholar 

  111. Leu HJ, Feigl W, Susani M (1987) Angiogenesis from mononuclear cells in thrombi. Virchows Arch A Pathol Anat Histopathol 411: 5–14

    Article  PubMed  CAS  Google Scholar 

  112. Leu HJ, Feigl W, Susani M, Odermatt B (1988) Differentiation of mononuclear blood cells into macrophages, fibroblasts and endothelial cells in thrombus organization. Exp Cell Biol 56: 201–210

    PubMed  CAS  Google Scholar 

  113. Rafii S (2000) Circulating endothelial precursors: Mystery, reality, and promise. J Clin Invest 105: 17–19

    Article  PubMed  CAS  Google Scholar 

  114. Murayama T, Asahara T (2002) Bone marrow-derived endothelial progenitor cells for vascular regeneration. Curr Opin Mol Ther 4: 395–402

    PubMed  Google Scholar 

  115. Moldovan NI (2002) Role of monocytes and macrophages in adult angiogenesis: A light at the tunnel’s end. J Hematother Stem Cell Res 11: 179–194

    Article  PubMed  Google Scholar 

  116. Bendeck MP (2000) Mining the myocardium with macrophage drills: A novel mechanism for revascularization. Circ Res 87: 341–343

    PubMed  CAS  Google Scholar 

  117. Wu MH, Shi Q, Wechezak AR, Clowes AW, Gordon IL, Sauvage LR (1995) Definitive proof of endothelialization of a Dacron arterial prosthesis in a human being. J Vasc Surg 21: 862–867

    Article  PubMed  CAS  Google Scholar 

  118. Ishibashi T, Miller H, Orr G, Sorgente N, Ryan SJ (1987) Morphologic observations on experimental subretinal neovascularization in the monkey. Invest Ophthalmol Visual Sci 28: 1116–1130

    CAS  Google Scholar 

  119. Moldovan NI (2003) Tissular insemination of progenitor endothelial cells: The problem, and a suggested solution. Adv Exp Med Biol 522: 99–113

    PubMed  Google Scholar 

  120. Tepper OM, Murayama T, Hanlon HD, Kalka C (2002) Therapeutic neovascularization as a novel approach to thrombus recanalization and resolution. Circulation 106: II-65-

    Article  Google Scholar 

  121. Singh I, Burnand KG, Collins M, Luttun A, Collen D, Boelhouwer B, Smith A (2003) Failure of thrombus to resolve in urokinase-type plasminogen activator gene-knockout mice: Rescue by normal bone marrow-derived cells. Circulation 107: 869–875

    Article  PubMed  CAS  ISI  Google Scholar 

  122. Dible HJ (1958) Organization and canalization in arterial thrombosis. J Pathol Bacteriol LXXV: 1–7

    Article  Google Scholar 

  123. Flanc C (1968) An experimental study of the recanalization of arterial and venous thrombi. Br J Surg 55: 519–524

    Article  PubMed  CAS  Google Scholar 

  124. Davies MJ, Ballantine SJ, Robertson WB, Woolf N (1975) The ultrastructure of organising experimental mural thrombi in the pig aorta. J Pathol 117: 75–81

    Article  PubMed  CAS  Google Scholar 

  125. Schwartz SM (1999) The definition of cell type. Circ Res 84: 1234–1235

    PubMed  CAS  Google Scholar 

  126. Hume DA, Ross IL, Himes SR, Sasmono RT, Wells CA, Ravasi T (2002) The mononuclear phagocyte system revisited. J Leukocyte Biol 72: 621–627

    PubMed  CAS  Google Scholar 

  127. Ziegler-Heitbrock HW, Fingerle G, Strobel M, Schraut W, Stelter F, Schutt C, Passlick B, Pforte A (1993) The novel subset of CD14+/CD16+ blood monocytes exhibits features of tissue macrophages. Eur J Immunol 23: 2053–2058

    Article  PubMed  CAS  Google Scholar 

  128. Tosh D, Slack JM (2002) How cells change their phenotype. Nat Rev Mol Cell Biol 3: 187–194

    Article  PubMed  CAS  Google Scholar 

  129. Tao H, Ma DD (2003) Evidence for transdifferentiation of human bone marrow-derived stem cells: Recent progress and controversies. Pathology 35: 6–13

    Article  PubMed  ISI  Google Scholar 

  130. Schmeisser A, Strasser RH (2002) Phenotypic overlap between hematopoietic cells with suggested angioblastic potential and vascular endothelial cells. J Hematother Stem Cell Res 11: 69–79

    Article  PubMed  CAS  Google Scholar 

  131. Campbell JH, Efendy JL, Campbell GR (1999) Novel vascular graft grown within recipient’s own peritoneal cavity. Circ Res 85: 1173–1178

    PubMed  CAS  Google Scholar 

  132. Moldovan NI, Havemann K (2002) Transdifferentiation, a potential mechanism for covering vascular grafts grown within recipient’s peritoneal cavity with endothelial-like cells. Circ Res 91: e1-

    Article  PubMed  CAS  Google Scholar 

  133. Zhou Y, Fisher SJ, Janatpour M, Genbacev O, Dejana E, Wheelock M, Damsky CH (1997) Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion? J Clin Invest 99: 2139–2151

    Article  PubMed  CAS  Google Scholar 

  134. McDonald DM, Foss AJ (2000) Endothelial cells of tumor vessels: Abnormal but not absent. Cancer Metastasis Rev 19: 109–120

    Article  PubMed  CAS  Google Scholar 

  135. Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe’er J, Trent JM, Meltzer PS, Hendri MJ (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155: 739–752

    PubMed  CAS  Google Scholar 

  136. McDonald DM, Munn L, Jain RK (2000) Vasculogenic mimicry: How convincing, how novel and how significant? Am J Pathol 156: 383–388

    PubMed  CAS  Google Scholar 

  137. Maniotis AJ, Chen X, Garcia C, DeChristopher PJ, Wu D, Pe’er J, Folberg R (2002) Control of melanoma morphogenesis, endothelial survival, and perfusion by extracellular matrix. Lab Invest 82: 1031–1043

    PubMed  Google Scholar 

  138. Burri PH, Djonov V (2002) Intussusceptive angiogenesis—The alternative to capillary sprouting. Mol Aspects Med 23: 1–27

    Article  Google Scholar 

  139. Drake CJ, Little CD (1999) VEGF and vascular fusion: Implications for normal and pathological vessels. J Histochem Cytochem 47: 1351–1356

    PubMed  CAS  Google Scholar 

  140. Boardman KC, Swartz MA (2003) Interstitial flow as a guide for lymphangiogenesis. Circ Res 92: 801–808

    Article  PubMed  CAS  Google Scholar 

  141. Asahara T, Murohara T, Sullivan A, Silver M, van der ZR, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275: 964–967

    Article  PubMed  CAS  ISI  Google Scholar 

  142. Harraz M, Jiao C, Hanlon HD, Hartley RS, Schatteman GC (2001) Cd34(-) blood-derived human endothelial cell progenitors. Stem Cells 19: 304–312

    Article  PubMed  CAS  ISI  Google Scholar 

  143. Schatteman GC, Hanlon HD, Jiao C, Dodds SG, Christy BA (2000) Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J Clin Invest 106: 571–578

    Article  PubMed  CAS  Google Scholar 

  144. Iba O, Matsubara H, Nozawa Y, Fujiyama S, Amano K, Mori Y, Kojima H, Iwasaka T (2002) Angiogenesis by implantation of peripheral blood mononuclear cells and platelets into ischemic limbs. Circulation 106: 2019–2025

    Article  PubMed  CAS  ISI  Google Scholar 

  145. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM et al. (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410: 701–705

    Article  PubMed  CAS  ISI  Google Scholar 

  146. Kawamoto A, Tkebuchava T, Yamaguchi J, Nishimura H, Yoon YS, Milliken C, Uchida S, Masuo O, Iwaguro H, Ma H et al. (2003) Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 107: 461–468

    Article  PubMed  ISI  Google Scholar 

  147. Fernandez PB, Lucibello FC, Gehling UM, Lindemann K, Weidner N, Zuzarte ML, Adamkiewicz J, Elsasser HP, Muller R, Havemann K (2000) Endothelial-like cells derived from human CD14 positive monocytes. Differentiation 65: 287–300

    Article  Google Scholar 

  148. Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89: E1–E7

    Article  PubMed  CAS  Google Scholar 

  149. Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, Silver M, Ma H, Kearney M, Isner JM, Asahara T (2001) Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103: 634–637

    PubMed  CAS  ISI  Google Scholar 

  150. Schmeisser A, Garlichs CD, Zhang H, Eskafi S, Graffy C, Ludwig J, Strasser RH, Daniel WG (2001) Monocytes coexpress endothelial and macrophagocytic lineage markers and form cordlike structures in Matrigel under angiogenic conditions. Cardiovasc Res 49: 671–680

    Article  PubMed  CAS  Google Scholar 

  151. Rehman J, Li J, Orschell CM, March KL (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107: 1164–1169

    Article  PubMed  ISI  Google Scholar 

  152. Burger PE, Coetzee S, McKeehan WL, Kan M, Cook P, Fan Y, Suda T, Hebbel RP, Novitzky N, Muller WA, Wilson EL (2002) Fibroblast growth factor receptor-1 is expressed by endothelial progenitor cells. Blood 100: 3527–3535

    Article  PubMed  CAS  ISI  Google Scholar 

  153. Zhao Y, Glesne D, Huberman E (2003) A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proc Natl Acad Sci USA 100: 2426–2431

    Article  PubMed  CAS  Google Scholar 

  154. Nakul-Aquaronne D, Bayle J, Frelin C (2003) Coexpression of endothelial markers and CD14 by cytokine mobilized CD34(+) cells under angiogenic stimulation. Cardiovasc Res 57: 816–823

    Article  PubMed  CAS  Google Scholar 

  155. Yamaguchi J, Kusano KF, Masuo O, Kawamoto A, Silver M, Murasawa S, Bosch-Marce M, Masuda H, Losordo DW, Isner JM, Asahara T (2003) Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 107: 1322–1328

    Article  PubMed  CAS  ISI  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Moldovan, L., Moldovan, N.I. (2005). Role of monocytes and macrophages in angiogenesis. In: Clauss, M., Breier, G. (eds) Mechanisms of Angiogenesis. Experientia Supplementum, vol 94. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7311-3_9

Download citation

Publish with us

Policies and ethics