Skip to main content

Role of pericytes in vascular morphogenesis

  • Chapter
Mechanisms of Angiogenesis

Part of the book series: Experientia Supplementum ((EXS))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rossant J, Howard L (2002) Signaling pathways in vascular development. Annu Rev Cell Dev Biol 18: 541–573

    Article  PubMed  CAS  Google Scholar 

  2. Cleaver O, Melton DA (2003) Endothelial signaling during development. Nat Med 9: 661–668

    Article  PubMed  CAS  Google Scholar 

  3. Sims DE (1986) The pericyte-A review. Tissue Cell 18: 153–174

    Article  PubMed  CAS  Google Scholar 

  4. Diaz-Flores L, Gutierrez R, Varela N, Rancel F, Valladares F (1991) Microvascular pericytes: A review of their morphological and functional characteristics. Histol Histopathol 6: 269–286

    PubMed  CAS  Google Scholar 

  5. Hirschi KK, D’Amore PA (1996) Pericytes in the microvasculature. Cardiovasc Res 32: 687–698

    Article  PubMed  CAS  Google Scholar 

  6. Hirschi KK, D’Amore PA (1998) Control of angiogenesis by the pericyte: molecular mechanisms and significance. J Neurosci Res 53: 637–644

    Article  Google Scholar 

  7. Sims DE (2000) Diversity within pericytes. Clin Exp Pharmacol Physiol 27: 842–846

    Article  PubMed  CAS  Google Scholar 

  8. Allt G, Lawrenson JG (2001) Pericytes: cell biology and pathology. Cells Tissues Organs 169: 1–11

    Article  PubMed  CAS  Google Scholar 

  9. Hungerford JE, Little CD (1999) Developmental biology of the vascular smooth muscle cell: building a multilayered vessel wall. J Vasc Res 36: 2–27

    Article  PubMed  CAS  Google Scholar 

  10. Etchevers HC, Vincent C, Le Douarin NM, Couly GF (2001) The cephalic neural crest provides pericytes and smooth muscle cells to all blodd vessels of the face and forebrain. Development 128: 1059–1068

    PubMed  CAS  Google Scholar 

  11. Hirschi KK, Rohovsky SA, D’Amore PA (1998) PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10 T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 141: 805–814

    Article  PubMed  CAS  Google Scholar 

  12. Li DY, Sorensen LK, Brooke BS, Urness LD, Davis EC, Taylor DG, Boak BB, Wendel DP (1999) Defective angiogenesis in mice lacking endoglin. Science 284: 1534–1537

    Article  PubMed  ADS  CAS  Google Scholar 

  13. Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten Dijke P, Kim S, Li E (2000) Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci USA 97: 2626–2631

    Article  PubMed  ADS  CAS  Google Scholar 

  14. Chang H, Huylebroeck D, Verschueren K, Guo Q, Matzuk MM, Zwijsen A (1999) Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. Development 126: 1631–1642

    PubMed  CAS  Google Scholar 

  15. Yang X, Castilla LH, Xu X, Li C, Gotay J, Weinstein M, Liu PP, Deng CX (1999) Angiogenesis defects and mesenchymal apoptosis in mice lacking SMAD5. Development 126: 1571–1580

    PubMed  CAS  Google Scholar 

  16. McAllister KA, Grogg KM, Johnson DW, Gallione CJ, Baldwin MA, Jackson CE, Helmbold EA, Markel DS, McKinnon WC, Murrell J et al. (1994) Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 8: 345–351

    Article  PubMed  CAS  Google Scholar 

  17. Johnson DW, Berg JN, Baldwin MA, Gallione CJ, Marondel I, Yoon SJ, Stenzel TT, Speer M, Pericak-Vance MA, Diamond A et al. (1996) Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 13: 189–195

    Article  PubMed  CAS  Google Scholar 

  18. Goumans M-J, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P (2002) Balancing the activation state of the endothelium via two distinct TGF beta type I receptors. EMBO J 21: 1743–1753

    Article  PubMed  CAS  Google Scholar 

  19. Hellström M, Kalén M, Lindahl P, Abramsson A, Betsholtz C (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126: 3047–3055

    PubMed  Google Scholar 

  20. Lindahl P, Johansson BR, Levéen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277: 242–245

    Article  PubMed  CAS  Google Scholar 

  21. Nehls V, Denzer K, Drenckhahn D (1992) Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell Tissue Res 270: 469–474

    Article  PubMed  CAS  Google Scholar 

  22. Ozerdem U, Grako KA, Dahlin-Huppe K, Monosov E, Stallcup WB (2001) NG2 proteoglykan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 222: 218–227

    Article  PubMed  CAS  Google Scholar 

  23. Bondjers C, Kalén M, Hellström M, Scheidl SJ, Abramsson A, Renner O, Lindahl P, Cho H, Kehr J, Betsholtz C (2003) Transcription profiling of PDGF-B deficient embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells. Am J Pathol 162: 721–729

    Article  PubMed  CAS  Google Scholar 

  24. Cho H, Kozaka T, Bondjers C, Betsholtz C, Kehrl J (2003) Pericyte-specific expression of RGS5: implications for PDGF and EDG receptor signaling during vascular maturation. FASEB J 17: 440–442

    PubMed  CAS  Google Scholar 

  25. Tidhar A, Reichenstein M, Cohen D, Faerman A, Copeland NG, Gilbert DJ, Jenkins NA, Shani M (2001) A novel transgenic marker for migrating limb muscle precursors and for vascular smooth muscle cells. Dev Dyn 220: 60–73

    Article  PubMed  CAS  Google Scholar 

  26. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip-cell filopodia. J Cell Biol 161: 1163–1177

    Article  PubMed  CAS  Google Scholar 

  27. Gerhardt H, Betsholtz C (2003) Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314: 15–23

    Article  PubMed  Google Scholar 

  28. Enge M, Bjarnegård M, Gerhardt H, Gustafsson E, Kalén M, Asker N, Hammes H-P, Shani M, Fässler R, Betsholtz C (2002) Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J 21: 4307–4316

    Article  PubMed  CAS  Google Scholar 

  29. Enge M, Wilhelmsson U, Abramsson A, Stakeberg J, Kühn R, Betsholtz C, Pekny M (2003) Neuron-specific ablation of PDGF-B is compatible with normal central nervous system development and astroglial response to injury. Neurochem Res 28: 271–279

    Article  PubMed  CAS  Google Scholar 

  30. Heldin CH, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79: 1283–1316

    PubMed  CAS  Google Scholar 

  31. Eriksson U, Alitalo K (1999) Structure, expression and receptor-binding properties of novel vascular endothelial growth factors. Curr Top Microbiol Immunol 237: 41–57

    PubMed  CAS  Google Scholar 

  32. Raines EW, Ross R (1992) Compartmentalization of PDGF on extracellular binding sites dependent on exon-6-encoded sequences. J Cell Biol 116: 533–543

    Article  PubMed  CAS  Google Scholar 

  33. Houck KA, Leung DW, Rowland AM, Winer J, Ferrara N (1992) Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem 267: 26031–26037

    PubMed  CAS  Google Scholar 

  34. Feyzi E, Lustig F, Fager G, Spillmann D, Lindahl U, Salmivirta M (1997) Characterization of heparin and heparan sulfate domains binding to the long splice variant of platelet-derived growth factor A chain. J Biol Chem 272: 5518–5524

    Article  PubMed  CAS  Google Scholar 

  35. Lindblom P, Gerhardt H, Liebner S, Abramsson A, Hellström M, Bäckström G, Fredriksson S, Landegren U, Nyström H, Bergström G et al. (2003) Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Gene Dev 17: 1835–1840

    Article  PubMed  CAS  Google Scholar 

  36. Östman A, Andersson M, Betsholtz C, Westermark B, Heldin C-H (1991) Identification of a cell retention signal in the B-chain of PDGF and in the long splice version of the A-chain. Cell Regul 2: 503–512

    PubMed  Google Scholar 

  37. LaRochelle WJ, May-Siroff M, Robbins KC, Aaronson SA (1991) A novel mechanism regulating growth factor association with the cell surface: identification of a PDGF retention domain. Genes Dev 5: 1191–1199

    Article  PubMed  CAS  Google Scholar 

  38. Amselgruber WM, Schafer M, Sinowatz F (1999) Angiogenesis in the bovine corpus luteum: en immunocytochemical and ultrastructural study. Anat Histol Embryol 28: 157–166

    Article  PubMed  CAS  Google Scholar 

  39. Reynolds LP, Grazul-Bilska AT, Redmer DA (2000) Angiogenesis in the corpus luteum. Endocrine 12: 1–9

    Article  PubMed  CAS  Google Scholar 

  40. Hellström M, Gerhardt H, Kalén M, Li X, Eriksson U, Wolburg H, Betsholtz C (2001) Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153: 543–553

    Article  PubMed  Google Scholar 

  41. Levéen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C (1994) Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev 8: 1875–1887

    Article  PubMed  Google Scholar 

  42. Soriano P (1994) Abnormal kidney development and hematological disorders in PDGF betareceptor mutant mice. Genes Dev 8: 1888–1896

    Article  PubMed  CAS  Google Scholar 

  43. Ohlsson R, Falck P, Hellstrom M, Lindahl P, Bostrom H, Franklin G, Ahrlund-Richter L, Pollar J, Soriano P, Betsholtz C (1999) PDGFB regulates the development of the labyrinthine layer of the mouse fetal placenta. Dev Biol 212: 124–136

    Article  PubMed  CAS  Google Scholar 

  44. Hempala J, Uv A, Cantera R, Bray S, Samakovlis C (2003) Grainy head controls apical membrane growth and tube elongation in response to Branchless/FGF signaling. Development 130: 249–258

    Article  CAS  Google Scholar 

  45. Uv A, Cantera R, Samakovlis C (2003) Drosophila tracheal morphogenesis: intricate cellular solutions to basic plumbing problems. Trends Cell Biol 13: 301–309

    Article  PubMed  CAS  Google Scholar 

  46. Klinghoffer RA, Mueting-Nelsen PF, Faerman A, Shani M, Soriano P (2001) The two PDGF receptors maintain conserved signaling in vivo despite divergent embryological functions. Mol Cells 7: 343–354

    Article  CAS  Google Scholar 

  47. Uemura A, Ogawa M, Hirashima M, Fujiwara T, Koyama S, Takagi H, Honda Y, Wiegand SJ, Yancopoulos GD, Nishikawa S (2002) Recombinant angiopoietin-1 restores higher-order architecture of growing blood vessels in mice in the absence of mural cells. J Clin Invest 110: 1619–1628

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Betsholtz, C., Lindblom, P., Gerhardt, H. (2005). Role of pericytes in vascular morphogenesis. In: Clauss, M., Breier, G. (eds) Mechanisms of Angiogenesis. Experientia Supplementum. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7311-3_8

Download citation

Publish with us

Policies and ethics