Skip to main content

Balancing luminal size and smooth muscle proliferation — a key control point in atherosclerosis and arteriogenesis

  • Chapter
Mechanisms of Angiogenesis

Part of the book series: Experientia Supplementum ((EXS))

  • 1218 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kerren G (1997) Compensatory enlargement, remodeling and restenosis. Adv Exp Med Biol 430: 187–196

    Google Scholar 

  2. Zarins CK, Weisenberg E, Kolettis G, Stankunavicius R, Glagov S (1988) Differential enlargement of artery segments in response to enlarging atherosclerotic plaques. J Vasc Surg 7: 386–394

    Article  PubMed  CAS  Google Scholar 

  3. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316: 1371–1375

    Article  PubMed  CAS  Google Scholar 

  4. Lafont A, Guzman LA, Whitlow PL, Goormastic M, Cornhill JF, Chisolm GM (1995) Restenosis after experimental angioplasty. Intimal, medial and adventitial changes associated with constrictive remodeling. Circ Res 76: 996–1002

    PubMed  CAS  Google Scholar 

  5. Peirce SM, Kalak TC (2003) Microvascular remodeling: A complex continuum spanning angiogenesis to arteriogenesis. Microcirculation 10: 99–111

    Article  PubMed  Google Scholar 

  6. Crosby JR, Kaminski WE, Schatteman G, Martin PJ, Raines EW, Seifert RA, Bowen-Pope DF (2000) Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res 87: 729–730

    Google Scholar 

  7. Bautz F, Rafii S, Kanz L, Mohle R (2000) Expression and secretion of vascular endothelial growth factor-A by cytokine-stimulated hematopoietic progenitor cells: Possible role in the hematopoietic microenvironment. Exp Hematol 28: 700–706

    Article  PubMed  CAS  Google Scholar 

  8. Sunderkotter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C (1994) Macrophages and angiogenesis. J Leukocyte Biol 55: 410–422

    PubMed  CAS  Google Scholar 

  9. Boesiger J, Tsai M, Maurer M, Yamaguchi M, Brown LF, Claffey KP, Dvorak HF, Galli SJ (1998) Mast cells can secrete vascular permeability or/vascular endothelial cell growth factor and exhibit enhanced release after immunoglobulin E-dependent upregulation of FcRI expression. J Exp Med 188: 1135–1145

    Article  PubMed  CAS  Google Scholar 

  10. Schaper J, König R, Franz D, Schaper W (1976) The endothelial surface of growing coronary collateral arteries: Intimal margination and diapedesis of monocytes; a combined SEM and TEM study. Virchows Arch A Pathol Anat Histol 370: 193–205

    Article  PubMed  CAS  Google Scholar 

  11. Scholz D, Ito W, Fleming I, Deindl E, Sauer A, Wiesnet M, Busse R, Schaper J, Schaper W (2000) Ultrastructure and molecular histology of rabbit hind-limb collateral artery growth (arteriogenesis). Virchows Arch 436: 257–270

    Article  PubMed  CAS  Google Scholar 

  12. Wolf C, Cai WJ, Vosschulte R, Koltai S, Mousavipour D, Scholz D, Afsah-Hedjri A, Schaper W, Schaper J (1998) Vascular remodeling and altered protein expression during growth of coronary collateral arteries. J Mol Cell Cardiol 30: 2291–2305

    Article  PubMed  CAS  Google Scholar 

  13. Schaper W (1971) The Collateral Circulation of the Heart,Vol. 1. North-Holland, Amsterdam, the Netherlands

    Google Scholar 

  14. Schaper W, Ito WD (1996) Molecular mechanisms of coronary collateral vessel growth. Circ Res 79: 911–919

    PubMed  CAS  Google Scholar 

  15. White FC, Carroll SM, Magnet A, Bloor CM (1992) Coronary collateral development in swine after coronary artery occlusion. Circ Res 71: 1490–1500

    PubMed  CAS  Google Scholar 

  16. Scholz D, Ziegelhoeffer T, Helisch A, Wagner S, Friedrich C, Podzuweit T, Schaper W (2002) Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion in mice. J Mol Cell Cardiol 34: 775–787

    Article  PubMed  CAS  Google Scholar 

  17. Hoefer IE, van Royen N, Buschmann IR, Piek JJ, Schaper W (2001) Time course of arteriogenesis following femoral artery occlusion in the rabbit. Cardiovasc Res 49: 609–617

    Article  PubMed  CAS  Google Scholar 

  18. Wei L, Erinjeri JP, Rovainen CM, Woolsey TA (2001) Collateral growth and angiogenesis around cortical stroke. Stroke 32: 2179–2184

    Article  PubMed  CAS  Google Scholar 

  19. Coyle P (1984) Diameter and length changes in cerebral collaterals after middle cerebral artery occlusion in the young rat. Anat Rec 210: 357–364

    Article  PubMed  CAS  Google Scholar 

  20. Lee RT, Schoen FJ, Loree HM, Lark MW, Libby P (1996) Circumferential stress and matrix metalloproteinase 1 in human coronary atherosclerosis. Implications for plaque rupture. Arterioscler Thromb Vasc Biol 16: 1070–1073

    PubMed  CAS  Google Scholar 

  21. Sindermann JR, Babij P, Klink JC, Kobbert C, Plenz G, Ebbing J, Fan L, March KL (2002) Smooth muscle-specific expression of SV40 large TAg induces SMC proliferation causing adaptive arterial remodeling. Am J Physiol Heart Circ Physiol 283: H2714–2724

    PubMed  CAS  Google Scholar 

  22. Nishida K, Harrison DG, Navas JP, Fisher AA, Dockery SP, Uematsu M, Nerem RM, Alexande RW, Murphy TJ (1992) Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J Clin Invest 90: 2092–2096

    Article  PubMed  CAS  Google Scholar 

  23. Tronc F, Mallat Z, Lehoux S, Wassef M, Esposito B, Tedgui A (2000) Role of matrix metalloproteinases in blood flow-induced arterial enlargement: Interaction with NO. Arterioscler Thromb Vasc Biol 20: E120–E126

    PubMed  CAS  Google Scholar 

  24. Ziche M, Morbidelli L, Choudhuri R, Zhang HT, Donnini S, Granger HJ, Bicknell R (1997) Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis. J Clin Invest 99: 2625–2634

    Article  PubMed  CAS  Google Scholar 

  25. Mooradian DL, Hutsell TC, Keefer LK (1995) Nitric oxide (NO) donor molecules: Effect of NO release rate on vascular smooth muscle cell proliferation in vitro. J Cardiovasc Pharmacol 25: 674–678

    Article  PubMed  CAS  Google Scholar 

  26. Sato J, Nair K, Hiddinga J, Eberhardt NL, Fitzpatrick LA, Katusic ZS, O’Brien T (2000) eNOS gene transfer to vascular smooth muscle cells inhibits cell proliferation via upregulation of p27 and p21 and not apoptosis. Cardiovasc Res 47: 697–706

    Article  PubMed  CAS  Google Scholar 

  27. Yu SM, Hung LM, Lin CC (1997) cGMP-elevating agents suppress proliferation of vascular smooth muscle cells by inhibiting the activation of epidermal growth factor signaling pathway. Circulation 95: 1269–1277

    PubMed  CAS  Google Scholar 

  28. RayChaudhury A, Frischer H, Malik AB (1996) Inhibition of endothelial cell proliferation and bFGF-induced phenotypic modulation by nitric oxide. J Cell Biochem 63: 125–134

    Article  PubMed  CAS  Google Scholar 

  29. Lloyd PG, Yang HT, Terjung RL (2001) Arteriogenesis and angiogenesis in rat ischemic hindlimb: Role of nitric oxide. Am J Physiol Heart Circ Physiol 281: H2528–H2538

    PubMed  CAS  Google Scholar 

  30. Matsunaga T, Warltier DC, Weihrauch DW, Moniz M, Tessmer J, Chilian WM (2000) Ischemiainduced coronary collateral growth is dependent on vascular endothelial growth factor and nitric oxide. Circulation 102: 3098–3103

    PubMed  CAS  Google Scholar 

  31. Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C, Kearney M, Chen D, Symes JF, Fishman MC et al., (1998) Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 101: 2567–2578

    Article  PubMed  CAS  Google Scholar 

  32. Yang HT, Ren J, Laughlin MH, Terjung RL (2002) Prior exercise training produces NO-dependent increases in collateral blood flow after acute arterial occlusion. Am J Physiol Heart Circ Physiol 282: H301–H310

    PubMed  CAS  Google Scholar 

  33. Gannon JV, Lane DP (1987) p53 and DNA polymerase alpha compete for binding to SV40 T antigen. Nature 329: 456–458

    Article  PubMed  ADS  CAS  Google Scholar 

  34. Mole SE, Gannon JV, Anton IA, Ford MJ, Lane DP (1989) Host proteins that bind to or mimic SV40 large T antigen: Using antibodies to look at protein interactions and their significance. Immunology (Suppl 2): 80–85

    Google Scholar 

  35. DeCaprio JA, Ludlow JW, Figge J, Shew JY, Huang CM, Lee WH, Marsilio E, Paucha E, Livingston DM (1988) SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54: 275–283

    Article  PubMed  CAS  Google Scholar 

  36. Dyson N, Buchkovich K, Whyte P, Harlow E (1989) The cellular 107K protein that binds to adenovirus E1A also associates with the large T antigens of SV40 and JC virus. Cell 58: 249–255

    Article  PubMed  CAS  Google Scholar 

  37. Wolf DA, Hermeking H, Albert T, Herzinger T, Kind P, Eick D (1995) A complex between E2F and the pRb-related protein p130 is specifically targeted by the simian virus 40 large T antigen during cell transformation. Oncogene 10: 2067–2078

    PubMed  CAS  Google Scholar 

  38. Busse R, Bauer RD, Sattler T, Schabert A (1981) Dependence of elastic and viscous properties of elastic arteries on circumferential wall stress at two different smooth muscle tones. Pflügers Arch 390: 113–119

    Article  PubMed  CAS  Google Scholar 

  39. Dilley RJ, Schwartz SM (1989) Vascular remodeling in the growth hormone transgenic mouse. Circ Res 65: 1233–1240

    PubMed  CAS  Google Scholar 

  40. Starksen NF, Harsh GR4th, Gibbs VC, Williams LT (1987) Regulated expression of the plateletderived growth factor A chain gene in microvascular endothelial cells. J Biol Chem 262: 14381–14384

    PubMed  CAS  Google Scholar 

  41. Hansson HA, Jennische E, Skottner A (1987) Regenerating endothelial cells express insulin-like growth factor-I immunoreactivity after arterial injury. Cell Tissue Res 250: 499–505

    Article  PubMed  CAS  Google Scholar 

  42. Saksela O, Rifkin DB (1990) Release of basic fibroblast growth factor-heparan sulfate complexes from endothelial cells by plasminogen activator-mediated proteolytic activity. J Cell Biol 110: 767–775

    Article  PubMed  CAS  Google Scholar 

  43. Burgess WH, Maciag T (1989) The heparin-binding (fibroblast) growth factor family of proteins. Annu Rev Biochem 58: 575–606

    Article  PubMed  CAS  Google Scholar 

  44. Mignatti P, Tsuboi R, Robbins E, Rifkin DB (1989) In vitro angiogenesis on the human amniotic membrane: Requirement for basic fibroblast growth factor-induced proteinases. J Cell Biol 108: 671–682

    Article  PubMed  CAS  Google Scholar 

  45. Dzau VJ, Mattner CM (2000) Circulatory regulation: The role of vascular remodeling. In: JT Willerson, JN Cohn (Eds): Cardiovascular medicine. Curchill Livingstone, Philadelphia, 1299–1310

    Google Scholar 

  46. Clemmons DR (1984) Interaction of circulating cell derived and plasma growth factors in stimulating cultured smooth muscle cell replication. J Cell Physiol 121: 425–430

    Article  PubMed  CAS  Google Scholar 

  47. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246: 1306–1309

    Article  PubMed  ADS  CAS  Google Scholar 

  48. Keck PJ, Hauser SD, Krivi G, Sanzo K, Warren T, Feder J, Connolly DT (1989) Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246: 1309–1312

    Article  PubMed  ADS  CAS  Google Scholar 

  49. Spyridopoulos I, Brogi E, Kearney M, Sullivan AB, Cetrulo C, Isner JM, Losordo DW (1997) Vascular endothelial growth factor inhibits endothelial cell apoptosis induced by tumor necrosis factor-alpha: Balance between growth and death signals. J Mol Cell Cardiol 29: 1321–1330

    Article  PubMed  CAS  Google Scholar 

  50. Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V, Ferrara N (1998) Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3’-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 273: 30336–30343

    Article  PubMed  CAS  Google Scholar 

  51. Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359: 843–845

    Article  PubMed  ADS  CAS  Google Scholar 

  52. Isner, Pieczek A, Schainfeld R Blair R, Haley L, Asahara T, Rosenfield K, Razvi S, Walsh K, Symes JF (1996) Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 348: 370–374

    Article  PubMed  CAS  Google Scholar 

  53. Sidle A, Chrystal P, Dirks P, Wiggan O, Kiess M, Gill M, Wong AK, Hamel PA (1996) Activity of the retinoblastoma family proteins, pRb, p107, and p130, during cellular proliferation and differentiation. Crit Rev Biochem Molec Biol 31: 237–271

    Article  CAS  Google Scholar 

  54. Herwig S, Strauss M (1997) The retinoblastoma protein: a master regulator of cell cycle, differentiation and apoptosis. Eur J Biochem 246: 581–601

    Article  PubMed  CAS  Google Scholar 

  55. Hiebert SW, Chellappan SP, Horowitz JM, Nevins JR (1992) The interaction of Rb with E2F coincides with an inhibition of the transcriptional activity of E2F. Gene Dev 6: 177–185

    Article  PubMed  CAS  Google Scholar 

  56. Kato J-Y, Matsushime H, Hiebert SW, Ewen ME, Sherr CJ (1993) Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Gene Dev 7: 331–342

    Article  PubMed  CAS  Google Scholar 

  57. Chang MW, Barr E, Seltzer J, Jiang YQ, Nabel GJ, Nabel EG, Parmacek MS, Leiden JM (1995) Cytostatic gene therapy for vascular proliferative disorders with a constitutively active form of the retinoblastoma gene product. Science 267: 518–522

    Article  PubMed  ADS  CAS  Google Scholar 

  58. Claudio PP, Fratta L, Farina F, Howard CM, Stassi G, Nutama S, Pacilio C, Davis A, Lavitrano M, Volpe M et al. (1999) Adenoviral RB2/p130 gene transfer inhibits smooth muscle cell proliferation and prevents restenosis after angioplasty. Circ Res 85: 1032–1039

    PubMed  CAS  Google Scholar 

  59. Sindermann JR, Smith J, Köbbert C, Plenz G, Skaletz-Rorowski A, Solomon JL, Fan L, March KL (2002) Direct evidence for the importance of p130 in injury response and arterial remodeling following carotid artery ligation. Cardiovasc Res 54: 676–683

    Article  PubMed  CAS  Google Scholar 

  60. Birnbaum Y, Fishbein MC, Luo H, Nishioka T, Siegel RJ (1997) Regional remodeling of atherosclerotic arteries: A major determinant of clinical manifestations of disease. J Am Coll Cardiol 30: 1149–1164

    Article  PubMed  CAS  Google Scholar 

  61. Labropoulos N, Zarge J, Mansour MA, Kang SS, Baker WH (1998) Compensatory arterial enlargement is a common pathobiologic response in early atherosclerosis. Am J Surg 176: 140–143

    Article  PubMed  CAS  Google Scholar 

  62. De Smet BJ, van der Zande J, van der Helm YJ, Kuntz RE, Borst C, Post MJ (1998) The atherosclerotic Yucatan animal model to study the arterial response after balloon angioplasty: The natural history of remodeling. Cardiovasc Res 39: 224–232

    Article  PubMed  Google Scholar 

  63. Von Birgelen C, Airiian SG, Mintz GS, van der Giessen WJ, Foley DP, Roelandt JR, Serruys PW, de Feyter PJ (1997) Variations of remodeling in response to left main atherosclerosis assessed with intravascular ultrasound in vivo. Am J Cardiol 80: 1408–1413

    Article  Google Scholar 

  64. Tauth J, Pinnow E, Sullebarger JT, Basta L, Gursoy S, Lindsay J Jr, Matar F (1997) Predictors of coronary arterial remodeling patterns in patients with myocardial ischemia. Am J Cardiol 80: 1352–1355

    Article  PubMed  CAS  Google Scholar 

  65. Kornowski R (1999) Impact of smoking on coronary atherosclerosis and remodeling as determined by intravascular ultrasonic imaging. Am J Cardiol 83: 443–445

    Article  PubMed  CAS  Google Scholar 

  66. Kornowski R, Mintz GS, Kent KM, Pichard AD, Satler LF, Bucher TA, Hong MK, Popma JJ, Leon MB (1997) Increased restenosis in diabetes mellitus after coronary interventions is due to exaggerated intimal hyperplasia: a serial intravascular ultrasound study. Circulation 95: 1366–1369

    PubMed  CAS  Google Scholar 

  67. Schwartz RS, Topol EJ, Serruys PW, Sangiorgi G, Holmes DR (1998) Artery size, neointima and remodeling. J Am Coll Cardiol 32: 2087–2094

    Article  PubMed  CAS  Google Scholar 

  68. Li DY, Faury G, Taylor DG, Davis EC, Boyle WA, Mecham RP, Stenzel P, Boak B, Keating MT (1998) Novel arterial pathology in mice and humans hemizygous for elastin. J Clin Invest 102: 1783–1787

    Article  PubMed  CAS  Google Scholar 

  69. Li DY, Brooke B, Davis EC, Mecham RP, Sorensen LK, Boak BB, Eichwald E, Keating MT (1998) Elastin is an essential determinant of arterial morphogenesis. Nature 393: 276–280

    Article  PubMed  ADS  CAS  Google Scholar 

  70. Gibbons GH, Dzau VJ (1994) The emerging concept of vascular remodeling. N Engl J Med 330: 1431–1438

    Article  PubMed  CAS  Google Scholar 

  71. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316: 1371–1375

    Article  PubMed  CAS  Google Scholar 

  72. Rose G, Prineas RJ, Mitchell JR (1967) Myocardial infarction and the intrinsic calibre of coronary arteries. Br Heart J 29: 548–552

    Article  PubMed  CAS  Google Scholar 

  73. Norris JN, Crawford MD (1958) Coronary heart disease and physical activity of work: evidence of a national necropsy survey. Br Med J 5111: 1485–1496

    Google Scholar 

  74. Mann GV, Spoerry A, Gray M, Jarashow D (1972) Atherosclerosis in the masai. Am J Epidemiol 95: 26–37

    PubMed  CAS  Google Scholar 

  75. Currens JH, White PD (1961) Half century of running: Clinical, physiologic and autopsy findings in the case of Clarence DeMar (“Mr. Marathon”). N Engl J Med 265: 988–993

    Article  PubMed  CAS  Google Scholar 

  76. Tepperman J, Perlman D (1961) Effect of exercise and anemia on coronary arteries of small animals as revealed by the corrosion-cast technique. Circ Res 9: 576–584

    PubMed  CAS  Google Scholar 

  77. Leon AS, Bloor CM (1968) Effects of exercise and its cessation on the heart and its blood supply. J Appl Physiol 24: 485–490

    PubMed  CAS  Google Scholar 

  78. Bloor CM, Leon AS (1970) Interaction of age and exercise on the heart and its blood supply. Lab Invest 22: 160–165

    PubMed  CAS  Google Scholar 

  79. Wyatt HL, Mitchell J (1978) Influences of physical conditioning and deconditioning on coronary vasculature of dogs. J Appl Physiol 45: 619–625

    PubMed  CAS  Google Scholar 

  80. Kramsch DM, Aspen AJ, Abramowitz BM, Kreimendahl T, Hood WB Jr (1981) Reduction of coronary atherosclerosis by moderate conditioning exercise in monkeys on an atherogenic diet. N Engl J Med 305: 1483–1489

    Article  PubMed  CAS  Google Scholar 

  81. O’Keefe JH Jr, Owen RM, Bove AA (1987) Influence of left ventricular mass on coronary artery cross-sectional area. Am J Cardiol 59: 1395–1397

    Google Scholar 

  82. Roberts CS, Roberts WC (1980) Cross-sectional area of the proximal portions of the three major epicardial coronary arteries in 98 necropsy patients with different coronary events: relationship to heart weight, age and sex. Circulation 62: 953–959

    PubMed  CAS  Google Scholar 

  83. Koiwa Y, Bahn RC, Ritman EL (1986) Regional myocardial volume perfused by the coronary artery branch: Estimation in vivo. Circulation 74: 157–163

    PubMed  CAS  Google Scholar 

  84. Gasul BM, Arcilla RA, Fell EH et al. (1960) Congenital coronary arteriovenous fistula: clinical, phonocardiographic, angiographic and hemodynamic studies in five patients. Pediatrics 25: 531–560

    PubMed  CAS  Google Scholar 

  85. Miller VM, Aarhus LL, Vanhoutte PM (1986) Modulation of endothelium-dependent responses by chronic alterations of blood flow. Am J Physiol 251: H520–H527

    PubMed  CAS  Google Scholar 

  86. Pohl U, Holtz J, Busse R, Bassenge E (1986) Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 8: 37–44

    PubMed  CAS  Google Scholar 

  87. Rubanyi GM, Romero JC, Vanhoutte PM (1986) Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 250: H1145–H1149

    PubMed  CAS  Google Scholar 

  88. Young MA, Vatner SF (1987) Blood flow-and endothelium-mediated vasomotion of iliac arteries in conscious dogs. Circ Res 61: II88–93

    PubMed  CAS  Google Scholar 

  89. Cooke JP, Stamler J, Andon N, Davies PF, McKinley G, Loscalzo J (1990) Flow stimulates endothelial cells to release a nitrovasodilator that is potentiated by reduced thiol. Am J Physiol 259: H804–812

    PubMed  CAS  Google Scholar 

  90. Langille BL, O’Donnell F (1986) Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 231: 405–407

    Article  PubMed  ADS  CAS  Google Scholar 

  91. Rudic RD, Shesely EG, Maeda N, Smithies O, Segal SS, Sessa WC (1998) Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J Clin Invest 101: 731–736

    Article  PubMed  CAS  Google Scholar 

  92. Tronc F, Wassef M, Esposito B, Henrion D, Glagov S, Tedgui A (1996) Role of NO in flowinduced remodeling of the rabbit common carotid artery. Arterioscler Thromb Vasc Biol 16: 1256–1262

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Sindermann, J.R., March, K.L. (2005). Balancing luminal size and smooth muscle proliferation — a key control point in atherosclerosis and arteriogenesis. In: Clauss, M., Breier, G. (eds) Mechanisms of Angiogenesis. Experientia Supplementum. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7311-3_14

Download citation

Publish with us

Policies and ethics