Skip to main content

Observations on measure and lowness for Δ P2

Extended abstract

  • Conference paper
  • First Online:
Book cover STACS 96 (STACS 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1046))

Included in the following conference series:

Abstract

Assuming that k≥2 and Δ P k does not have p-measure 0, it is shown that BP · Δ P k P k . This implies that the following conditions hold if Δ P2 does not have p-measure 0.

  1. (i)

    AM ∩ co-AM is low for Δ P2 . (Thus BPP and the graph isomorphism problem are low for Δ> P2 .)

  2. (ii)

    If Δ P2 ≠ PH, then NP does not have polynomial-size circuits.

This research was supported in part by National Science Foundation Grant CCR-9157382, with matching funds from Rockwell International, Microware Systems Corporation, and Amoco Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Allender and M. Strauss. Measure on small complexity classes with applications for BPP. In Proceedings of the 35th Symposium on Foundations of Computer Science, pages 807–818. IEEE Computer Society Press, 1994.

    Google Scholar 

  2. J. L. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity I (second edition). Springer-Verlag, Berlin, 1995.

    Google Scholar 

  3. M. Bellare and S. Goldwasser. The complexity of decision versus search. SIAM Journal on Computing, 23:97–119, 1994.

    Article  Google Scholar 

  4. Daniel Pierre Bovet and Pierluigi Crescenzi. Introduction to the Theory of Complexity. Prentice Hall, 1994.

    Google Scholar 

  5. D. W. Juedes. The Complexity and Distribution of Computationally Useful Problems. PhD thesis, Iowa State University, 1994.

    Google Scholar 

  6. D. W. Juedes and J. H. Lutz. Completeness and weak completeness under polynomial-size circuits. Information and Computation. To appear.

    Google Scholar 

  7. D. W. Juedes and J. H. Lutz. The complexity and distribution of hard problems. SIAM Journal on Computing, 24(2):279–295, 1995.

    Article  Google Scholar 

  8. R. Karp and R. Lipton. Some connections between nonuniform and uniform complexity classes. In Proc. 12th ACM Symp. Theory of Computer Science, pages 302–309, 1980.

    Google Scholar 

  9. A. Klapper. Generalized lowness and highness and probabilistic classes. Mathematical Systems Theory, 22:37–45, 1989.

    Google Scholar 

  10. K. Ko. Separating and collapsing results on the relativized probablistic polynomial-time hierarchy. Journal of the Association for Computing Machinery, 37:415–438, 1990.

    Google Scholar 

  11. K. Ko and U. Schöning. On circuit-size complexity and the low hierarchy in NP. SIAM J. Comput., 14:41–51, 1985.

    Article  Google Scholar 

  12. J. Köbler. On the structure of low sets. In Proceedings of the Tenth Structure in Complexity Theory Conference, pages 246–261. IEEE Computer Society Press, 1995.

    Google Scholar 

  13. J. Köbler, U. Schöning, and J. Torán. The Graph Isomorphism Problem. Birkhäuser, Berlin, 1993.

    Google Scholar 

  14. J. Köbler and O. Watanabe. New collapse consequences of NP having small circuits. In Proceedings of the 22nd International Colloquium on Automata, Languages, and Programming. Springer-Verlag, 1995. To appear.

    Google Scholar 

  15. C. Lautemann. BPP and the polynomial hierarchy. Information Processing Letters, 14:215–217, 1983.

    Article  Google Scholar 

  16. J. H. Lutz. Resource-bounded measure. In preparation.

    Google Scholar 

  17. J. H. Lutz. Weakly hard problems. SIAM Journal on Computing, 24. To appear, 1995. See also Proceedings of the Ninth Structure in Complexity Theory Conference, 1994, pp. 146–161. IEEE Computer Society Press.

    Google Scholar 

  18. J. H. Lutz. An upward measure separation theorem. Theoretical Computer Science, 81:127–135, 1991.

    Article  Google Scholar 

  19. J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer and System Sciences, 44:220–258, 1992.

    Google Scholar 

  20. J. H. Lutz. A pseudorandom oracle characterization of BPP. SIAM Journal on Computing, 22:1075–1086, 1993.

    Article  Google Scholar 

  21. J. H. Lutz. The quantitative structure of exponential time. In Proceedings of the Eighth Structure in Complexity Theory Conference, pages 158–175. IEEE Computer Society Press, 1993.

    Google Scholar 

  22. J. H. Lutz and E. Mayordomo. Cook versus Karp-Levin: Separating completeness notions if NP is not small. Theoretical Computer Science. To appear. See also Proceedings of the Eleventh Symposium on Theoretical Aspects of Computer Science, Springer-Verlag, 1994, pp. 415–426.

    Google Scholar 

  23. J. H. Lutz and E. Mayordomo. Measure, stochasticity, and the density of hard languages. SIAM Journal on Computing, 23:762–779, 1994.

    Article  Google Scholar 

  24. J. H. Lutz and W. J. Schmidt. Circuit size relative to pseudorandom oracles. Theoretical Computer Science, 107:95–120, March 1993.

    Article  Google Scholar 

  25. E. Mayordomo. Almost every set in exponential time is P-bi-immune. Theoretical Computer Science, 136(2):487–506, 1994.

    Article  Google Scholar 

  26. E. Mayordomo. Contributions to the Study of Resource-Bounded Measure. PhD thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 1994.

    Google Scholar 

  27. N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Computer and System Sciences, 49:149–167, 1994.

    Google Scholar 

  28. Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

    Google Scholar 

  29. U. Schöning. A low and high hierarchy within NP. Journal of Computer and System Sciences, 27:14–28, 1983.

    Article  Google Scholar 

  30. U. Schöning. Graph isomorphism is in the low hierarchy. Journal of Computer and System Sciences, 37:312–323, 1988.

    Google Scholar 

  31. U. Schöning. Probabilistic complexity classes and lowness. Journal of Computer and System Sciences, 39:84–100, 1989.

    Google Scholar 

  32. M. Sipser. A complexity-theoretic approach to randomness. In Proceedings of the 15th ACM Symposium on Theory of Computing, pages 330–335, 1983.

    Google Scholar 

  33. L. J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3:1–22, 1977.

    Article  Google Scholar 

  34. C. B. Wilson. Relativized circuit complexity. Journal of Computer and System Sciences, 31:169–181, 1985.

    Google Scholar 

  35. C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Computer Science, 3:23–33, 1977.

    Article  Google Scholar 

  36. S. Zachos and H. Heller. A decisive characterization of BPP. Information and Control, 69:125–135, 1986.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Claude Puech Rüdiger Reischuk

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lutz, J.H. (1996). Observations on measure and lowness for Δ P2 . In: Puech, C., Reischuk, R. (eds) STACS 96. STACS 1996. Lecture Notes in Computer Science, vol 1046. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60922-9_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-60922-9_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60922-3

  • Online ISBN: 978-3-540-49723-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics