Session 8. Chair: Michael Juenger

Algorithms — ESA '95

Volume 979 of the series Lecture Notes in Computer Science pp 473-483

Date:

0/1-Integer programming: Optimization and Augmentation are equivalent

  • Andreas S. SchulzAffiliated withTechnische Universität Berlin, Fachbereich Mathematik (MA 6-1)
  • , Robert WeismantelAffiliated withKonrad-Zuse-Zentrum für Informationstechnik Berlin
  • , Günter M. ZieglerAffiliated withTechnische Universität Berlin, Fachbereich Mathematik (MA 6-1)

* Final gross prices may vary according to local VAT.

Get Access

Abstract

For every family of sets \(\mathcal{F} \subseteq \{ 0,1\} ^n\)the following problems are strongly polynomial time equivalent: given a feasible point x0\(\mathcal{F}\)and a linear objective function c ∈ ℤ n ,
  • find a feasible point x * \(\mathcal{F}\)that maximizes c x (Optimization),

  • find a feasible point x new\(\mathcal{F}\)with cx new > cx 0 (Augmentation), and

  • find a feasible point xnew\(\mathcal{F}\)with cx new > c x 0 such that x newx 0 is “irreducible” (Irreducible Augmentation).

This generalizes results and techniques that are well known for 0/1-integer programming problems that arise from various classes of combinatorial optimization problems.