Skip to main content

Background knowledge and declarative bias in inductive concept learning

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 642))

Abstract

There are two main limitations of classical inductive learning algorithms: the limited capability of taking into account the available background knowledge and the use of limited knowledge representation formalisms based on propositional logic. The paper presents a method for using background knowledge effectively in learning both attribute and relational descriptions. The method, implemented in the system LINUS, uses propositional learners in a more expressive logic programming framework. This allows for learning of logic programs in the form of constrained deductive hierarchical database clauses. The paper discusses the language bias imposed by the method and shows how a more expressive language of determinate logic programs can be used within the same framework.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Ade and M. Bruynooghe. A comparative study of declarative and dynamically adjustable language bias in concept learning. In Proc. Workshop on Logical Approaches to Machine Learning, Tenth European Conference on Artificial Intelligence, Vienna, Austria, 1992. To appear.

    Google Scholar 

  2. F. Bergadano, A. Giordana and S. Ponsero. Deduction in top-down inductive learning. In Proc. Sixth International Workshop on Machine Learning, pages 23–25, Morgan Kaufmann, San Mateo, CA, 1989.

    Google Scholar 

  3. I. Bratko, I. Mozetič and N. Lavrač. KARDIO: a study in deep and qualitative knowledge for expert systems, MIT Press, Cambridge, MA, 1989.

    Google Scholar 

  4. I. Bratko, S.H. Muggleton and A. Varšek. Learning qualitative models of dynamic systems. In S. H. Muggleton, editor, Inductive Logic Programming, Academic Press, London, 1992. In press.

    Google Scholar 

  5. M. Bruynooghe and L. De Raedt. Technical annex of the ESPRIT BRA 6020 Inductive Logic Programming.

    Google Scholar 

  6. B. Cestnik, I. Kononenko and I. Bratko. ASSISTANT 86: A knowledge elicitation tool for sophisticated users. In I. Bratko and N. Lavrač, editors, Progress in Machine Learning, pages 31–45, Sigma Press, Wilmslow, 1987.

    Google Scholar 

  7. P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3(4): 261–283, 1989.

    Google Scholar 

  8. L. De Raedt and M. Bruynooghe. Indirect relevance and bias in inductive concept-learning. Knowledge Acquisition, 2: 365–390, 1990.

    Google Scholar 

  9. L. De Raedt and M. Bruynooghe. Interactive concept learning and constructive induction by analogy. Machine Learning, 8(2): 107–150, 1992.

    Google Scholar 

  10. L. De Raedt, M. Bruynooghe and B. Martens. Integrity constraints in interactive concept learning. In Proc. Eighth International Workshop on Machine Learning, pages 394–398, Morgan Kaufmann, San Mateo, CA, 1991.

    Google Scholar 

  11. S. Džeroski. Handling noise in inductive logic programming. MSc Thesis, Faculty of Electrical Engineering and Computer Science, University of Ljubljana, Slovenia, 1991.

    Google Scholar 

  12. S. Džeroski and N. Lavrač. Learning relations from noisy examples: an empirical comparison of LINUS and FOIL. In Proc. Eighth International Workshop on Machine Learning, pages 399–402, Morgan Kaufmann, San Mateo, CA, 1991.

    Google Scholar 

  13. S. Džeroski and N. Lavrač. Refinement graphs for FOIL and LINUS. In S.H. Muggleton, editor, Inductive Logic Programming, Academic Press, London, 1992. In press.

    Google Scholar 

  14. S. Džeroski, S. Muggleton and S. Russell. PAC-learnability of determinate logic programs. In Proc. Fifth ACM Workshop on Computational Learning Theory, Pittsburgh, PA, 1992. To appear.

    Google Scholar 

  15. S. Džeroski, S. Muggleton and S. Russell. PAC-learnability of constrained nonrecursive logic programs. Submitted for publication.

    Google Scholar 

  16. L. M. Fu and B. G. Buchanan. Learning intermediate concepts in constructing a hierarchical knowledge base. In Proc. Ninth International Joint Conference on Artificial Intelligence, pages 659–666, Morgan Kaufmann, Los Altos, CA, 1985.

    Google Scholar 

  17. J.U. Kietz and S. Wrobel. Controlling the complexity of learning in logic through syntactic and task-oriented models. In S.H. Muggleton, editor, Inductive Logic Programming, Academic Press, London, 1992. In press.

    Google Scholar 

  18. R. Kowalski. Logic for problem solving, North Holland, New York, 1979.

    Google Scholar 

  19. N. Lavrač and S. Džeroski. Inductive learning of relations from noisy examples. In S.H. Muggleton, editor, Inductive Logic Programming, Academic Press, London, 1992. In press.

    Google Scholar 

  20. N. Lavrač, S. Džeroski and M. Grobelnik. Learning nonrecursive definitions of relations with LINUS. In Proc. Fifth European Working Session on Learning, pages 265–281, Springer, Berlin, 1991.

    Google Scholar 

  21. N. Lavrač, S. Džeroski, V. Pirnat and V. Križman. Learning rules for early diagnosis of rheumatic diseases. In Proc. Third Scandinavian Conference on Artificial Intelligence, pages 138–149, IOS Press, Amsterdam, 1991.

    Google Scholar 

  22. M. Li and P. Vitányi. Learning simple concepts under simple distributions. SIAM Journal of Computing, 20(5): 911–935, 1991.

    Google Scholar 

  23. J.W. Lloyd. Foundations of Logic Programming (2nd edn), Springer, Berlin, 1987.

    Google Scholar 

  24. R. S. Michalski. Discovering classification rules using variable-valued logic system VL1. In Proc. Third International Joint Conference on Artificial Intelligence, pages 162–172, Stanford Research Institute, Menlo Park, CA, 1973.

    Google Scholar 

  25. R.S. Michalski. Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2(4): 349–361, 1980.

    Google Scholar 

  26. R.S. Michalski. A theory and methodology of inductive learning. In R.S. Michalski, J.G. Carbonell and T.M. Mitchell, editors, Machine learning: an artificial intelligence approach, Vol. 1, pages 83–134, Tioga, Palo Alto, CA, 1983.

    Google Scholar 

  27. R.S. Michalski, I. Mozetič, J. Hong and N. Lavrač. The multi-purpose incremental learning system AQ15 and its testing application on three medical domains. In Proc. National Conference on Artificial Intelligence, pages 1041–1045, Morgan Kaufmann, San Mateo, CA, 1986.

    Google Scholar 

  28. I. Mozetič. NEWGEM: Program for learning from examples, technical documentation and user's guide. Reports of Intelligent Systems Group, No. UIUCDCS-F-85-949, Department of Computer Science, University of Illinois at Urbana Champaign, 1985. Also Technical Report IJS-DP-4390, Jožef Stefan Institute, Ljubljana, Slovenia.

    Google Scholar 

  29. I. Mozetič. Learning of qualitative models. In I. Bratko and N. Lavrač, editors, Progress in Machine Learning, pages 201–217, Sigma Press, Wilmslow, 1987.

    Google Scholar 

  30. I. Mozetič and N. Lavrač. Incremental learning from examples in a logic-based formalism. In P. Brazdil, editor, Proc. Workshop on Machine Learning, Meta-Reasoning and Logics, pages 109–127, Sesimbra, Portugal, 1988.

    Google Scholar 

  31. S.H. Muggleton. Duce, an oracle-based approach to constructive induction. In Proc. Tenth International Joint Conference on Artificial Intelligence, pages 287–292, Morgan Kaufmann, San Mateo, CA, 1989.

    Google Scholar 

  32. S.H. Muggleton. Inductive logic programming. New Generation Computing, 8(4): 295–318, 1991.

    Google Scholar 

  33. S.H. Muggleton and W. Buntine. Machine invention of first-order predicates. In Proc. Fifth International Conference on Machine Learning, pages 339–352, Morgan Kaufmann, San Mateo, CA, 1988.

    Google Scholar 

  34. S.H. Muggleton and C. Feng. Efficient induction of logic programs. In Proc. First Conference on Algorithmic Learning Theory, pages 368–381, Ohmsha, Tokyo, 1990.

    Google Scholar 

  35. M. Nunez. The use of background knowledge in decision tree induction. Machine learning, 6(3): 231–250, 1991.

    Google Scholar 

  36. G. Pagallo and D. Haussler. Boolean feature discovery in empirical learning. Machine Learning 5(1): 71–99, 1990.

    Google Scholar 

  37. J.R. Quinlan. Induction of decision trees. Machine Learning, 1(1): 81–106, 1986.

    Google Scholar 

  38. J.R. Quinlan. Learning logical definitions from relations. Machine Learning, 5(3): 239–266, 1990.

    Google Scholar 

  39. J.R. Quinlan. Knowledge acquisition from structured data — using determinate literals to assist search. IEEE Expert 6(6): 32–37, 1991.

    Google Scholar 

  40. S. Russell. The use of knowledge in analogy and induction, Pitman, London, 1989.

    Google Scholar 

  41. E.Y. Shapiro. Algorithmic Program Debugging, MIT Press, Cambridge, MA, 1983.

    Google Scholar 

  42. J.D. Ullman. Principles of database and knowledge base systems (Volume I), Computer Science Press, Rockville, MA, 1988.

    Google Scholar 

  43. P.E. Utgoff and T. M. Mitchell. Acquisition of appropriate bias for inductive concept learning. In Proc. National Conference on Artificial Intelligence, pages 414–417, Kaufmann, Los Altos, CA, 1982.

    Google Scholar 

  44. J. Wnek, J. Sarma, A. A. Wahab, and R. S. Michalski. Comparing learning paradigms via diagrammatic visualization: A case study in single concept learning using symbolic, neural net and genetic algorithm methods. In Proc. Fifth International Symposium on Methodologies for Intelligent Systems, Knoxville, TN, 1990.

    Google Scholar 

  45. S. Wrobel. Automatic representation adjustment in an observational discovery system. In Proc. Third European Working Session on Learning, pages 253–262, Pitmann, London, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Klaus P. Jantke

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lavrač, N., Džeroski, S. (1992). Background knowledge and declarative bias in inductive concept learning. In: Jantke, K.P. (eds) Analogical and Inductive Inference. AII 1992. Lecture Notes in Computer Science, vol 642. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56004-1_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-56004-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56004-3

  • Online ISBN: 978-3-540-47339-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics