[1]
N. Alon and V. H. Vu. Anti-Hadamard matrices, coin weighing, threshold gates, and indecomposable hypergraphs.
Journal of Combinatorial Theory, 79A:133–160, 1997.
CrossRefMathSciNet[2]
E. Balas, S. Ceria, G. Cornuéjols, and N. R. Natraj. Gomory cuts revisited.
Operations Research Letters, 19:1–9, 1996.
MATHCrossRefMathSciNet[3]
E. Balas and M. J. Saltzman. Facets of the three-index assignment polytope.
Discrete Applied Mathematics, 23:201–229, 1989.
MATHCrossRefMathSciNet[4]
F. Barahona, M. Grötschel, and A. R. Mahjoub. Facets of the bipartite subgraph polytope.
Mathematics of Operations Research, 10:340–358, 1985.
MATHMathSciNet[5]
A. Bockmayr and F. Eisenbrand. On the Chvátal rank of polytopes in the 0/1 cube. Research Report MPI-I-97-2-009, Max-Planck-Institut für Informatik, September 1997.
[6]
A. Bockmayr, F. Eisenbrand, M. E. Hartmann, and A. S. Schulz. On the Chvátal rank of polytopes in the 0/1 cube. Technical Report 616, Technical University of Berlin, Department of Mathematics, December 1998.
[7]
M. Bonet, T. Pitassi, and R. Raz. Lower bounds for cutting planes proofs with small coefficients.
Journal of Symbolic Logic, 62:708–728, 1997.
MATHCrossRefMathSciNet[8]
S. C. Boyd and W. H. Cunningham. Small travelling salesman polytopes.
Mathematics of Operations Research, 16:259–271, 1991.
MATHMathSciNet[9]
S. C. Boyd, W. H. Cunningham, M. Queyranne, and Y. Wang. Ladders for travelling salesmen.
SIAM Journal on Optimization, 5:408–420, 1995.
MATHCrossRefMathSciNet[10]
S. C. Boyd and W. R. Pulleyblank. Optimizing over the subtour polytope of the travelling salesman problem.
Mathematical Programming, 49:163–187, 1991.
CrossRefMathSciNet[11]
V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems.
Discrete Mathematics, 4:305–337, 1973.
MATHCrossRefMathSciNet[12]
V. Chvátal. Flip-flops in hypohamiltonian graphs.
Canadian Mathematical Bulletin, 16:33–41, 1973.
MATHMathSciNet[13]
V. Chvátal, W. Cook, and M. E. Hartmann. On cutting-plane proofs in combinatorial optimization.
Linear Algebra and its Applications, 114/115:455–499, 1989.
CrossRef[14]
W. Cook, C. R. Coullard, and Gy. Turán. On the complexity of cutting plane proofs.
Discrete Applied Mathematics, 18:25–38, 1987.
MATHCrossRefMathSciNet[15]
W. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. Combinatorial Optimization. John Wiley, 1998.
[16]
F. Eisenbrand. A note on the membership problem for the first elementary closure of a polyhedron. Technical Report 605, Technical University of Berlin, Department of Mathematics, November 1998. To appear in Combinatorica.
[17]
P. Erdös. On circuits and subgraphs of chromatic graphs.
Mathematika, 9:170–175, 1962.
MathSciNetMATHCrossRef[18]
M. Fischetti. Three facet lifting theorems for the asymmetric traveling salesman polytope. In E. Balas, G. Cournuéjols, and R. Kannan, editors, Integer Programming and Combinatorial Optimization, pages 260–273. Proceedings of the 2nd IPCO Conference, 1992.
[19]
T. Fleiner, V. Kaibel, and G. Rote. Upper bounds on the maximal number of facets of 0/1-polytopes. Technical Report 98-327, University of Cologne, Department of Computer Science, 1998. To appear in European Journal of Combinatorics.
[20]
R. Giles and L. E. Trotter. On stable set polyhedra for
K
_{1,3}-free graphs.
Journal of Combinatorial Theory, 31:313–326, 1981.
MATHCrossRefMathSciNet[21]
R. E. Gomory. Outline of an algorithm for integer solutions to linear programs.
Bulletin of the American Mathematical Society, 64:275–278, 1958.
MATHMathSciNetCrossRef[22]
R. E. Gomory. An algorithm for integer solutions to linear programs. In R. L. Graves and P. Wolfe, editors, Recent Advances in Mathematical Programming, pages 269–302. McGraw-Hill, 1963.
[23]
M. Grötschel and M. W. Padberg. Polyhedral theory. In E. L. Lawler, J. K. Lenstra, A. H. G. Rinnoy Kan, and D. B. Shmoys, editors, The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, pages 251–305. John Wiley, 1985.
[24]
M. Grötschel and W. R. Pulleyblank. Clique tree inequalities and the symmetric travelling salesman problem.
Mathematics of Operations Research, 11:537–569, 1986.
MATHMathSciNetCrossRef[25]
A. Haken. The intractability of resolution.
Theoretical Computer Science, 39:297–308, 1985.
MATHCrossRefMathSciNet[26]
P. L. Hammer, E. Johnson, and U. N. Peled. Facets of regular 0–1 polytopes.
Mathematical Programming, 8:179–206, 1975.
MATHCrossRefMathSciNet[27]
M. E. Hartmann. Cutting planes and the complexity of the integer hull. Technical Report 819, School of Operations Research and Industrial Engineering, Cornell University, September 1988.
[28]
M. E. Hartmann. Personal communication, March 1998.
[29]
M. E. Hartmann, M. Queyranne, and Y. Wang. On the Chvátal rank of certain inequalities. This volume, 1999.
[30]
R. Impagliazzo, T. Pitassi, and A. Urquhart. Upper and lower bound for tree-like cutting plane proofs. In Proc. Logic in Computer Science, LICS’94, Paris, 1994.
[31]
U. H. Kortenkamp, J. Richter-Gebert, A. Sarangarajan, and G. M. Ziegler. Extremal properties of 0/1-polytopes.
Discrete and Computational Geometry, 17:439–448, 1997.
MATHCrossRefMathSciNet[32]
D. Naddef. The Hirsch conjecture is true for (0,1)-polytopes.
Mathematical Programming, 45:109–110, 1989.
MATHCrossRefMathSciNet[33]
M. W. Padberg and M. Grötschel. Polyhedral computations. In E. L. Lawler, J. K. Lenstra, A. H. G. Rinnoy Kan, and D. B. Shmoys, editors, The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, pages 307–360. John Wiley, 1985.
[34]
P. Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computations.
Journal of Symbolic Logic, 62:981–988, 1997.
MATHCrossRefMathSciNet[35]
W. R. Pulleyblank. Polyhedral combinatorics. In G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd, editors, Optimization, Volume 1 of Handbooks in Operations Research and Management Science, Chapter V, pages 371–446. Elsevier, 1989.
[36]
A. Schrijver. On cutting planes.
Annals of Discrete Mathematics, 9:291–296, 1980.
MATHMathSciNetCrossRef[37]
A. Schrijver. Theory of Linear and Integer Programming. John Wiley, 1986.
[38]
A. S. Schulz.
Polytopes and Scheduling. PhD thesis, Technical University of Berlin, Berlin, Germany, 1996.
MATH[39]
A. S. Schulz. A simple proof that the Chvátal rank of polytopes in the 0/1-cube is small. Unpublished manuscript, September 1997.
[40]
A. S. Schulz, R. Weismantel, and G. M. Ziegler. An optimization problem is ten problems. In preparation.