[1]

N. Alon and V. H. Vu. Anti-Hadamard matrices, coin weighing, threshold gates, and indecomposable hypergraphs.

*Journal of Combinatorial Theory*, 79A:133–160, 1997.

CrossRefMathSciNetGoogle Scholar[2]

E. Balas, S. Ceria, G. Cornuéjols, and N. R. Natraj. Gomory cuts revisited.

*Operations Research Letters*, 19:1–9, 1996.

MATHCrossRefMathSciNetGoogle Scholar[3]

E. Balas and M. J. Saltzman. Facets of the three-index assignment polytope.

*Discrete Applied Mathematics*, 23:201–229, 1989.

MATHCrossRefMathSciNetGoogle Scholar[4]

F. Barahona, M. Grötschel, and A. R. Mahjoub. Facets of the bipartite subgraph polytope.

*Mathematics of Operations Research*, 10:340–358, 1985.

MATHMathSciNetGoogle Scholar[5]

A. Bockmayr and F. Eisenbrand. On the Chvátal rank of polytopes in the 0/1 cube. Research Report MPI-I-97-2-009, Max-Planck-Institut für Informatik, September 1997.

[6]

A. Bockmayr, F. Eisenbrand, M. E. Hartmann, and A. S. Schulz. On the Chvátal rank of polytopes in the 0/1 cube. Technical Report 616, Technical University of Berlin, Department of Mathematics, December 1998.

[7]

M. Bonet, T. Pitassi, and R. Raz. Lower bounds for cutting planes proofs with small coefficients.

*Journal of Symbolic Logic*, 62:708–728, 1997.

MATHCrossRefMathSciNetGoogle Scholar[8]

S. C. Boyd and W. H. Cunningham. Small travelling salesman polytopes.

*Mathematics of Operations Research*, 16:259–271, 1991.

MATHMathSciNetGoogle Scholar[9]

S. C. Boyd, W. H. Cunningham, M. Queyranne, and Y. Wang. Ladders for travelling salesmen.

*SIAM Journal on Optimization*, 5:408–420, 1995.

MATHCrossRefMathSciNetGoogle Scholar[10]

S. C. Boyd and W. R. Pulleyblank. Optimizing over the subtour polytope of the travelling salesman problem.

*Mathematical Programming*, 49:163–187, 1991.

CrossRefMathSciNetGoogle Scholar[11]

V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems.

*Discrete Mathematics*, 4:305–337, 1973.

MATHCrossRefMathSciNetGoogle Scholar[12]

V. Chvátal. Flip-flops in hypohamiltonian graphs.

*Canadian Mathematical Bulletin*, 16:33–41, 1973.

MATHMathSciNetGoogle Scholar[13]

V. Chvátal, W. Cook, and M. E. Hartmann. On cutting-plane proofs in combinatorial optimization.

*Linear Algebra and its Applications*, 114/115:455–499, 1989.

CrossRefGoogle Scholar[14]

W. Cook, C. R. Coullard, and Gy. Turán. On the complexity of cutting plane proofs.

*Discrete Applied Mathematics*, 18:25–38, 1987.

MATHCrossRefMathSciNetGoogle Scholar[15]

W. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. *Combinatorial Optimization*. John Wiley, 1998.

[16]

F. Eisenbrand. A note on the membership problem for the first elementary closure of a polyhedron. Technical Report 605, Technical University of Berlin, Department of Mathematics, November 1998. To appear in *Combinatorica*.

[17]

P. Erdös. On circuits and subgraphs of chromatic graphs.

*Mathematika*, 9:170–175, 1962.

MathSciNetMATHCrossRefGoogle Scholar[18]

M. Fischetti. Three facet lifting theorems for the asymmetric traveling salesman polytope. In E. Balas, G. Cournuéjols, and R. Kannan, editors, *Integer Programming and Combinatorial Optimization*, pages 260–273. Proceedings of the 2nd IPCO Conference, 1992.

[19]

T. Fleiner, V. Kaibel, and G. Rote. Upper bounds on the maximal number of facets of 0/1-polytopes. Technical Report 98-327, University of Cologne, Department of Computer Science, 1998. To appear in *European Journal of Combinatorics*.

[20]

R. Giles and L. E. Trotter. On stable set polyhedra for

*K*
_{1,3}-free graphs.

*Journal of Combinatorial Theory*, 31:313–326, 1981.

MATHCrossRefMathSciNetGoogle Scholar[21]

R. E. Gomory. Outline of an algorithm for integer solutions to linear programs.

*Bulletin of the American Mathematical Society*, 64:275–278, 1958.

MATHMathSciNetCrossRefGoogle Scholar[22]

R. E. Gomory. An algorithm for integer solutions to linear programs. In R. L. Graves and P. Wolfe, editors, *Recent Advances in Mathematical Programming*, pages 269–302. McGraw-Hill, 1963.

[23]

M. Grötschel and M. W. Padberg. Polyhedral theory. In E. L. Lawler, J. K. Lenstra, A. H. G. Rinnoy Kan, and D. B. Shmoys, editors, *The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization*, pages 251–305. John Wiley, 1985.

[24]

M. Grötschel and W. R. Pulleyblank. Clique tree inequalities and the symmetric travelling salesman problem.

*Mathematics of Operations Research*, 11:537–569, 1986.

MATHMathSciNetCrossRefGoogle Scholar[25]

A. Haken. The intractability of resolution.

*Theoretical Computer Science*, 39:297–308, 1985.

MATHCrossRefMathSciNetGoogle Scholar[26]

P. L. Hammer, E. Johnson, and U. N. Peled. Facets of regular 0–1 polytopes.

*Mathematical Programming*, 8:179–206, 1975.

MATHCrossRefMathSciNetGoogle Scholar[27]

M. E. Hartmann. Cutting planes and the complexity of the integer hull. Technical Report 819, School of Operations Research and Industrial Engineering, Cornell University, September 1988.

[28]

M. E. Hartmann. Personal communication, March 1998.

[29]

M. E. Hartmann, M. Queyranne, and Y. Wang. On the Chvátal rank of certain inequalities. This volume, 1999.

[30]

R. Impagliazzo, T. Pitassi, and A. Urquhart. Upper and lower bound for tree-like cutting plane proofs. In *Proc. Logic in Computer Science, LICS’94*, *Paris*, 1994.

[31]

U. H. Kortenkamp, J. Richter-Gebert, A. Sarangarajan, and G. M. Ziegler. Extremal properties of 0/1-polytopes.

*Discrete and Computational Geometry*, 17:439–448, 1997.

MATHCrossRefMathSciNetGoogle Scholar[32]

D. Naddef. The Hirsch conjecture is true for (0,1)-polytopes.

*Mathematical Programming*, 45:109–110, 1989.

MATHCrossRefMathSciNetGoogle Scholar[33]

M. W. Padberg and M. Grötschel. Polyhedral computations. In E. L. Lawler, J. K. Lenstra, A. H. G. Rinnoy Kan, and D. B. Shmoys, editors, *The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization*, pages 307–360. John Wiley, 1985.

[34]

P. Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computations.

*Journal of Symbolic Logic*, 62:981–988, 1997.

MATHCrossRefMathSciNetGoogle Scholar[35]

W. R. Pulleyblank. Polyhedral combinatorics. In G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd, editors, *Optimization*, Volume 1 of *Handbooks in Operations Research and Management Science*, Chapter V, pages 371–446. Elsevier, 1989.

[36]

A. Schrijver. On cutting planes.

*Annals of Discrete Mathematics*, 9:291–296, 1980.

MATHMathSciNetCrossRefGoogle Scholar[37]

A. Schrijver. *Theory of Linear and Integer Programming*. John Wiley, 1986.

[38]

A. S. Schulz.

*Polytopes and Scheduling*. PhD thesis, Technical University of Berlin, Berlin, Germany, 1996.

MATHGoogle Scholar[39]

A. S. Schulz. A simple proof that the Chvátal rank of polytopes in the 0/1-cube is small. Unpublished manuscript, September 1997.

[40]

A. S. Schulz, R. Weismantel, and G. M. Ziegler. An optimization problem is ten problems. In preparation.