Chapter

Computer Vision — ECCV 2002

Volume 2352 of the series Lecture Notes in Computer Science pp 531-542

Date:

Spectral Partitioning with Indefinite Kernels Using the Nyström Extension

  • Serge BelongieAffiliated withUniversity of California
  • , Charless FowlkesAffiliated withUniversity of California, Berkeley
  • , Fan ChungAffiliated withUniversity of California
  • , Jitendra MalikAffiliated withUniversity of California, Berkeley

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Fowlkes et al. [7] recently introduced an approximation to the Normalized Cut (NCut) grouping algorithm [18] based on random subsampling and the Nyström extension. As presented, their method is restricted to the case where W, the weighted adjacency matrix, is positive definite. Although many common measures of image similarity (i.e. kernels) are positive definite, a popular example being Gaussian-weighted distance, there are important cases that are not. In this work, we present a modification to Nyström-NCut that does not require W to be positive definite. The modification only affects the orthogonalization step, and in doing so it necessitates one additional O(m 3) operation, where m is the number of random samples used in the approximation. As such it is of interest to know which kernels are positive definite and which are indefinite. In addressing this issue, we further develop connections between NCut and related methods in the kernel machines literature. We provide a proof that the Gaussian-weighted chi-squared kernel is positive definite, which has thus far only been conjectured. We also explore the performance of the approximation algorithm on a variety of grouping cues including contour, color and texture.