Skip to main content

Image Registration, Optical Flow, and Local Rigidity

  • Conference paper
  • First Online:
Scale-Space and Morphology in Computer Vision (Scale-Space 2001)

Part of the book series: Lecture Notes in Computer Science 2106 ((LNCS,volume 2106))

Included in the following conference series:

Abstract

We address the theoretical problems of optical flow estimation and image registration in a multi-scale framework in any dimension. We start by showing, in the translation case, that convergence to the global minimum is made easier by applying a low pass filter to the images hence making the energy “convex enough”. In order to keep convergence to the global minimum in the general case, we introduce a local rigidity hypothesis on the unknown deformation. We then deduce a new natural motion constraint equation (MCE) at each scale using the Dirichlet low pass operator. This allows us to derive sufficient conditions for convergence of a new multi-scale and iterative motion estimation/registration scheme towards a global minimum of the usual nonlinear energy instead of a local minimum as did all previous methods. We then use an implicit numerical approach. We illustrate our method on synthetic and real examples (Motion, Registration, Morphing).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Alvarez, J. Esclarin, M. Lefébure, J. Sanchez. A PDE model for computing the optical flow. Proc. XVI Congresso de Ecuaciones Diferenciales y Aplicaciones, Las Palmas, pp. 1349–1356, 1999.

    Google Scholar 

  2. L. Alvarez, J. Weickert, J. Sanchez, Reliable estimation of dense optical flow fields with large displacements. TR 2, Universidad de Las Palmas, November 1999.

    Google Scholar 

  3. G. Aubert, R. Deriche and P. Kornprobst. Computing optical flow via variational techniques. SIAM J. Appl. Math., Vol. 60(1), pp. 156–182, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Ayache. Medical computer vision, virtual reality and robotics. IVC (13),No 4, May 1995, pp 295–313.

    Article  Google Scholar 

  5. Ruzena Bajcsy and Stane Kovacic. Multiresolution elastic matching. CVGIP, (46),No 1, pp. 1–21, 1989.

    Google Scholar 

  6. J.L. Barron, D.J. Fleet, and S.S. Beauchemin. Performance of optical flow. IJCV, 12(1):43–77, 1994.

    Article  Google Scholar 

  7. M. Ben-Ezra, B. Rousso, and S. Peleg. Motion segmentation using convergence properties. In ARPA Im. Unders. Workshop, pp II 1233–1235, 1994.

    Google Scholar 

  8. J.R. Bergen and E.H. Adelson. Hierarchical, computationally efficient motion estimation algorithm. J. of the Optical Society Am., 4(35), 1987.

    Google Scholar 

  9. P. Bouthemy and J.M. Odobez. Robust multiresolution estimation of parametric motion models. J. of Vis. Comm. and Image Repres., 6(4):348–365, 1995.

    Article  Google Scholar 

  10. G. Christensen, R.D. Rabbitt, and M.I. Miller. 3D brain mapping using a deformable neuroanatomy. Physics in Med and Biol, (39), March: 609–618, 1994.

    Article  Google Scholar 

  11. D. Fleet, M. Black, Y. Yacoob and A. Jepson. Design and use of linear models for image motion analysis. IJCV, 36(3), 2000.

    Google Scholar 

  12. P.R. Giaccone, D. Greenhill, G.A. Jones. Recovering very large visual motion fields. SCIA97, pp 917–922.

    Google Scholar 

  13. B.K.P. Horn and Brian Schunck. Determining optical flow. Artificial Intelligence, (17)(1-3):185–204, 1981.

    Article  Google Scholar 

  14. M. Irani, B. Rousso, and S. Peleg. Detecting and tracking multiple moving objects using temporal integration. In ECCV92, pp 282–287, 1992.

    Google Scholar 

  15. M. Lefébure Estimation de Mouvement et Recalage de Signaux et d’Images: Formalisation et Analyse. PhD Thesis, Université Paris-Dauphine, 1998.

    Google Scholar 

  16. Martin Lefébure and Laurent D. Cohen. A multiresolution algorithm for signal and image registration. In In Proc. ICIP’97, Santa Barbara, California, Oct. 1997.

    Google Scholar 

  17. M. Lefébure and L.D. Cohen. Motion estimation and registration of signals and images: formalization and analysis. CEREMADE Technical Report, 0102, January 2001. To appear in Journal of Mathematical Imaging and Vision.

    Google Scholar 

  18. D. Terzopoulos. Multiresolution algorithms in computational vision. Image Understanding. S. Ullman, W. Richards, 1986.

    Google Scholar 

  19. J.P. Thirion. Fast non-rigid matching of 3D medical images. TR 2547, INRIA, 1995.

    Google Scholar 

  20. A. Trouvé. Diffeomorphisms groups and pattern matching in image analysis IJCV, 28(3), 1998.

    Google Scholar 

  21. J. Weickert. On discontinuity-preserving optic flow. Proc. Computer Vision and Mobile Robotics Workshop, Santorini, pp. 115–122, Sept. 1998.

    Google Scholar 

  22. G. Whitten. A framework for adaptive scale space tracking solutions to problems in computational vision. In ICCV’90, Osaka, pp 210–220, Dec 1990.

    Google Scholar 

  23. A. Witkin, D. Terzopoulos, M. Kass. Signal matching through scale space. IJCV, 1(2):133–144, 1987.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lefébure, M., Cohen, L.D. (2001). Image Registration, Optical Flow, and Local Rigidity. In: Kerckhove, M. (eds) Scale-Space and Morphology in Computer Vision. Scale-Space 2001. Lecture Notes in Computer Science 2106, vol 2106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47778-0_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-47778-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42317-1

  • Online ISBN: 978-3-540-47778-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics