Skip to main content

Model Minimization in Hierarchical Reinforcement Learning

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2371))

Abstract

When applied to real world problems Markov Decision Processes (MDPs) often exhibit considerable implicit redundancy, especially when there are symmetries in the problem. In this article we present an MDP minimization framework based on homomorphisms. The framework exploits redundancy and symmetry to derive smaller equivalent models of the problem. We then apply our minimization ideas to the options framework to derive relativized options—options defined without an absolute frame of reference. We demonstrate their utility empirically even in cases where the minimization criteria are not met exactly.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Boutilier and R. Dearden. Using abstractions for decision theoretic planning with time constraints. In Proceedings of the AAAI-94, pages 1016–1022. AAAI, 1994.

    Google Scholar 

  2. C. Boutilier, R. Dearden, and M. Goldszmidt. Exploiting structure in policy construction In Proceedings of International Joint Conference on Artificial Intelligence 14, pages 1104–1111, 1995.

    Google Scholar 

  3. Steven J. Bradtke and Michael O. Duff. Reinforcement learning methods for continuous-time Markov decision problems. In Advances in Neural Information Processing Systems 7. MIT Press, 1995.

    Google Scholar 

  4. Thomas Dean and Robert Givan. Model minimization in markov decision processes. In Proceedings of AAAI-97, pages 106–111. AAAI, 1997.

    Google Scholar 

  5. E. A. Emerson and A. P. Sistla. Symmetry and model checking. Formal Methods in System Design, 9(1/2):105–131, 1996.

    Article  Google Scholar 

  6. Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and model minimization in markov decision processes. Submitted to Artificial Intelligence, 2001.

    Google Scholar 

  7. Robert Givan, Sonia Leach, and Thomas Dean. Bounded-parameter markov decision processes. Artificial Intelligence, 122:71–109, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Glover. Symmetry groups and translation invariant representations of markov processes. The Annals of Probability, 19(2):562–586, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Hartmanis and R. E. Stearns. Algebraic Structure Theory of Sequential Machines. Prentice-Hall, Englewood Cliffs, NJ, 1966.

    MATH  Google Scholar 

  10. Glenn A. Iba. A heuristic approach to the discovery of macro-operators. Machine Learning, 3:285–317, 1989.

    Google Scholar 

  11. J. R. Jump. A note on the iterative decomposition of finite automata. Information and Control, 15:424–435, 1969.

    Article  MATH  MathSciNet  Google Scholar 

  12. K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and Computation, 94(1):1–28, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  13. D. Lee and M. Yannakakis. Online minimization of transition systems. In Proceed-ings of 24th Annual ACM Symposium on the Theory of Computing, pages 264–274. ACM, 1992.

    Google Scholar 

  14. Doina Precup. Temporal Abstraction in Reinforcement Learning. PhD thesis, University of Massachusetts, Amherst, May2000.

    Google Scholar 

  15. B. Ravindran and A. G. Barto. Symmetries and model minimization of markov decision processes. Technical Report 01-43, University of Massachusetts, Amherst, 2001.

    Google Scholar 

  16. Richard S. Sutton and Andrew G. Barto. Reinforcement Learning. An Introduction. MIT Press, Cambridge, MA, 1998.

    Google Scholar 

  17. Richard S. Sutton, Doina Precup, and Satinder Singh. Between MDPs and Semi-MDPs: A framework for temporal abstraction in reinforcement learning. Artificial Intelligence, 112:181–211, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  18. C. J. C. H. Watkins. Learning from delayed rewards. PhD thesis, Cambridge University, Cambridge, England, 1989.

    Google Scholar 

  19. M. Zinkevich and T. Balch. Symmetry in markov decision processes and its implications for single agent and multi agent learning. In Proceedings of the 18th International Conference on Machine Learning, pages 632–640, San Francisco, CA, 2001. Morgan Kaufmann.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ravindran, B., Barto, A.G. (2002). Model Minimization in Hierarchical Reinforcement Learning. In: Koenig, S., Holte, R.C. (eds) Abstraction, Reformulation, and Approximation. SARA 2002. Lecture Notes in Computer Science(), vol 2371. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45622-8_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-45622-8_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43941-7

  • Online ISBN: 978-3-540-45622-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics