Date: 17 Jul 2001

Statistical Models for Automatic Performance Tuning

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Achieving peak performance from library subroutines usually requires extensive, machine-dependent tuning by hand. Automatic tuning systems have emerged in response, and they typically operate, at compile-time, by (1) generating a large number of possible implementations of a subroutine, and (2) selecting a fast implementation by an exhaustive, empirical search. This paper applies statistical techniques to exploit the large amount of performance data collected during the search. First, we develop a heuristic for stopping an exhaustive compile-time search early if a near-optimal implementation is found. Second, we show how to construct run-time decision rules, based on run-time inputs, for selecting from among a subset of the best implementations. We apply our methods to actual performance data collected by the PHiPAC tuning system for matrix multiply on a variety of hardware platforms.