Skip to main content

Efficient Computation of Class Numbers of Real Abelian Number Fields

  • Conference paper
  • First Online:
Algorithmic Number Theory (ANTS 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2369))

Included in the following conference series:

Abstract

Let K m be a parametrized family of real abelian number fields of known regulators, e.g. the simplest cubic fields associated with the Q-irreducible cubic polynomials P m (x) = x 3mx 2 − (m + 3)x − 1. We develop two methods for computing the class numbers of these Km’s. As a byproduct of our computation, we found 32 cyclotomic fields Qp) of prime conductors p < 1010 for which some prime qp divides the class numbers h + p of their maximal real subfields Qp)+ (but we did Not find any conterexample to Vandiver’s conjecture!).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Bach. Explicit bounds for primality testing and related problems. Math. Comp. 55 (1990), 355–380.

    Article  MathSciNet  MATH  Google Scholar 

  2. B.C. Berndt and R.J. Evans. The determination of Gauss sums. Bull. Amer. Math. Soc. 5(2) (1981), 107–129. Corrigendum im 7(2) (1982), 411.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Byeon. Class number 3 problem for the simplest cubic fields. Proc. Amer. Math. Soc. 128 (2000), 1319–1323.

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Cornell and L. C. Washington. Class numbers of cyclotomic fields. J. Number Theory 21 (1985), 260–274.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. N. Gras. Special units in real cyclic sextic fields. Math. Comp. 48 (1988), 543–556.

    MathSciNet  Google Scholar 

  6. K. Ireland and M. Rosen. A classical introduction to modern number theory. Second edition. Graduate Texts in Mathematics, 84. Springer-Verlag, New York, 1990.

    Google Scholar 

  7. S. Jeannin. Nombre de classes et unités des corps de nombres cycliques quintiques d’E. Lehmer. J. Théor. Nombres Bordeaux 8 (1996), no. 1, 75–92.

    MathSciNet  MATH  Google Scholar 

  8. S. Lang. Algebraic Number Theory. Second edition. Graduate Texts in Mathematics, 110. Springer-Verlag, New York, 1994.

    Google Scholar 

  9. S. Louboutin. Computation of relative class numbers of imaginary abelian number fields. Experimental Math. 7 (1998), 293–303.

    MathSciNet  MATH  Google Scholar 

  10. S. Louboutin. Sur le calcul numérique des constantes des équation fonctionnelles des fonctions L associées aux caractères impairs. C. R. Acad. Sci. Paris 329 (1999), 347–350.

    MathSciNet  MATH  Google Scholar 

  11. S. Louboutin. Computation of relative class numbers of CM-fields by using Hecke L-functions. Math. Comp. 69 (2000), 371–393.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Louboutin. The exponent three class group problem for some real cyclic cubic number fields. Proc. Amer. Math. Soc. 130 (2002), 353–361.

    Article  MathSciNet  MATH  Google Scholar 

  13. Efficient computation of root numbers, Gauss sums, and class numbers of real abelian number fields. In preparation.

    Google Scholar 

  14. F. Lemmermeyer and A. Pethö. Simplest cubic fields. Manuscripta Math. 88 (1995), 53–58.

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Moser. Nombre de classes d’une extension cyclique réelle de Q de degré 4 ou 6 et de conducteur premier. Math. Nachr. 102 (1981), 45–52.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Shanks. The simplest cubic fields. Math. Comp. 28 (1974), 1137–1152.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. M. Stark. Dirichlet’s class-number formula revisited. Contemp. Math. 143 (1993), 571–577.

    MathSciNet  Google Scholar 

  18. R. Schoof and L.C. Washington. Quintic polynomials and real cyclotomic fields with large class numbers. Math. Comp. 50 (1987), 179–182.

    MathSciNet  Google Scholar 

  19. E. Seah, L.C. Washington and H.C. Williams. The calculation of a large cubic class number with an application to real cyclotomic fields. Math. Comp. 41 (1983), 303–305.

    Article  MathSciNet  MATH  Google Scholar 

  20. L. C. Washington. Class numbers of the simplest cubic fields. Math. Comp. 48 (1987), 371–384.

    Article  MathSciNet  MATH  Google Scholar 

  21. H. C. Williams and J. Broere. A computational technique for evaluating L(1, χ) and the class number of a real quadratic field. Math. Comp. 30 (1976), 887–893.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Louboutin, S.R. (2002). Efficient Computation of Class Numbers of Real Abelian Number Fields. In: Fieker, C., Kohel, D.R. (eds) Algorithmic Number Theory. ANTS 2002. Lecture Notes in Computer Science, vol 2369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45455-1_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-45455-1_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43863-2

  • Online ISBN: 978-3-540-45455-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics