Skip to main content

Hybrid Modeling and Simulation of Biomolecular Networks

  • Conference paper
  • First Online:
Book cover Hybrid Systems: Computation and Control (HSCC 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2034))

Included in the following conference series:

Abstract

In a biological cell, cellular functions and the genetic regula- tory apparatus are implemented and controlled by a network of chemical reactions in which regulatory proteins can control genes that produce other regulators, which in turn control other genes. Further, the feed- back pathways appear to incorporate switches that result in changes in the dynamic behavior of the cell. This paper describes a hybrid systems approach to modeling the intra-cellular network using continuous differ- ential equations to model the feedback mechanisms and mode-switching to describe the changes in the underlying dynamics. We use two case studies to illustrate a modular approach to modeling such networks and describe the architectural and behavioral hierarchy in the underlying models. We describe these models using Charon [2], a language that allows formal description of hybrid systems. We provide preliminary sim- ulation results that demonstrate how our approach can help biologists in their analysis of noisy genetic circuits. Finally we describe our agenda for future work that includes the development of models and simulation for stochastic hybrid systems.1

This research was supported in part by DARPA/ITO Mobies project (grant number F33615-00-C-1707) and NSF grant CDS-97-03220.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer Science, 138:3–34, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  2. R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee. Modular specifications of hybrid systems in Charon In Hybrid Systems: Computation and Control, Third International Workshop, volume LNCS 1790, pages 6–19, 2000.

    Chapter  Google Scholar 

  3. G. Booch, I. Jacobson, and J. Rumbaugh. Unified Modeling Language User Guide. Addison Wesley, 1997.

    Google Scholar 

  4. R. Brent. Genomic biology. Cell, 100(1):169–183, January 2000.

    Article  Google Scholar 

  5. H. de Jong, M. Page, C. Hernandez, H. Geiselmann, and S. Maza. Modeling and Simulation of Genetic Regulatory Networks. ERCIM News, 43, October 2000.

    Google Scholar 

  6. A. Deshpande, A. Göllu, and L. Semenzato. SHIFT programming language and run-time systems for dynamic networks of hybrid automata. Technical report, University of California at Berkeley, 1997.

    Google Scholar 

  7. M. Elowitz and S. Leibler. Asynthetic oscillatory network of transciptional regulators. Nature, 403:335–338, January 2000.

    Article  Google Scholar 

  8. D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81:2340–2361, 1977.

    Article  Google Scholar 

  9. D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming, 8:231–274, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  10. L.H. Hartwell, J.J. Hopfield, S. Leibler, and A.W. Murray. From molecular to modular cell biology. Nature, 402((6761 Suppl)):C47–52, December 1999.

    Article  Google Scholar 

  11. D.J. Hassett, J.F. Ma, J.G. Elkins, T.R. McDermott, U.A. Ochsner, S.E. West, C.T. Huand, J. Fredericks, S. Burnett, P.S. Stewart, G. McFeters, L. Passador, and B.H. Iglewski. Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol, 34(5):1082–1093, December 1999.

    Article  Google Scholar 

  12. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

    Google Scholar 

  13. S. James, P. Nilson, G. James, S. Kjellenberg, and T. Fagerstrom. Luminescence control in the marine bacterium Vibrio fischeri: An analysis of the dynamics of lux regulation. J Mol Biol, 296(4):1127–1137, March 2000.

    Article  Google Scholar 

  14. D.E. Jr Koshland. The era of pathway quantification. Science, 280:852–853, 1998.

    Article  Google Scholar 

  15. N. Lynch, R. Segala, F. Vaandrager, and H. Weinberg. Hybrid I/O automata. In Hybrid Systems III: Verification and Control, LNCS 1066, pages 496–510, 1996.

    Google Scholar 

  16. H. H. McAdams and A. Arkin. Simulation of prokaryotic genetic circuits. Annu. Rev. Biophys. Biomol. Struct., 27:199–224, 1998.

    Article  Google Scholar 

  17. D.M. Sitnikov, J.B. Schineller and T.O. Baldwin. Transcriptional regulation of bioluminescence genes from Vibrio fischeri. Mol Microbiol, 17(5):801–812, September 1995.

    Article  Google Scholar 

  18. K.L. Visick, J. Foster, J. Doino, M. McFall-Ngai and E.G. Ruby. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. Bacteriol, 182(16):4578–4586, August 2000.

    Article  Google Scholar 

  19. G. von Dassow, E. Meir, E. M. Munro, and G. M. Odell. The segment polarity network is a robust development module. Nature, 406:188–192, July 2000.

    Article  Google Scholar 

  20. H. Yang, M. Matewish, I. Loubens, D.G. Storey, J.S. Lam, and S. Jin. migA, a quorum-responsive gene of Pseudomonas aeruginosa, is highly expressed in the cystic fibrosis lung environment and modifies low-molecular-mass lipopolysaccharide. Microbiology, 146((Pt 10)):2509–2519, October 2000.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alur, R. et al. (2001). Hybrid Modeling and Simulation of Biomolecular Networks. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds) Hybrid Systems: Computation and Control. HSCC 2001. Lecture Notes in Computer Science, vol 2034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45351-2_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-45351-2_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41866-5

  • Online ISBN: 978-3-540-45351-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics