Skip to main content

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 222))

Abstract

Theoretically, light muonic atoms have two main special features as compared with the ordinary electronic hydrogenlike atoms, both of which are connected with the fact that the muon is about 200 times heavier than the electron1. First, the role of the radiative corrections generated by the closed electron loops is greatly enhanced, and second, the leading proton size contribution becomes the second largest individual contribution to the energy shifts after the polarization correction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. A. Wheeler, Rev. Mod. Phys. 21, 133 (1949).

    Article  ADS  MathSciNet  Google Scholar 

  2. F. Kottmann et al, Hyperfine Interactions 138, 55 (2001).

    Article  ADS  Google Scholar 

  3. E. Borie, Phys. Rev. A 71, 032508 (2005).

    Article  ADS  Google Scholar 

  4. A. D. Galanin and I. Ia. Pomeranchuk, Dokl. Akad. Nauk SSSR 86, 251 (1952).

    MATH  Google Scholar 

  5. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum electrodynamics, 2nd Edition, Pergamon Press, Oxford, 1982.

    Google Scholar 

  6. L. D. Landau and E. M. Lifshitz, “Quantum Mechanics”, 3d Edition, Butterworth-Heinemann, 1997.

    Google Scholar 

  7. L. Schiff, Quantum Mechanics, 3d ed., McGraw-Hill, New York, 1968.

    Google Scholar 

  8. A. B. Mickelwait and H. C. Corben, Phys. Rev. 96, 1145 (1954).

    Article  ADS  Google Scholar 

  9. G. E. Pustovalov, Zh. Eksp. Teor. Fiz. 32, 1519 (1957) [Sov. Phys.-JETP 5, 1234 (1957)].

    Google Scholar 

  10. A. Di Giacomo, Nucl. Phys. B 11, 411 (1969).

    Article  ADS  Google Scholar 

  11. R. Glauber, W. Rarita, and P. Schwed, Phys. Rev. 120, 609 (1960).

    Article  MATH  ADS  Google Scholar 

  12. G. Kallen and A. Sabry, Kgl. Dan. Vidensk. Selsk. Mat.-Fis. Medd. 29 (1955) No.17.

    Google Scholar 

  13. J. Blomkwist, Nucl. Phys. B 48, 95 (1972).

    Article  ADS  Google Scholar 

  14. K.-N. Huang, Phys. Rev. A 14, 1311 (1976).

    Article  ADS  Google Scholar 

  15. T. Kinoshita and W. B. Lindquist, Phys. Rev. D27, 853 (1983).

    ADS  Google Scholar 

  16. T. Kinoshita and W. B. Lindquist, Phys. Rev. D27, 867 (1983).

    ADS  Google Scholar 

  17. P. A. Baikov and D. J. Broadhurst, preprint OUT-4102-54, hep-ph 9504398, April 1995, published in the proceedings New Computing Technique in Physics Research IV, ed. B. Denby and D. Perret-Gallix, World Scientific, 1995.

    Google Scholar 

  18. T. Kinoshita and M. Nio, Phys. Rev. Lett. 82, 3240 (1999).

    Article  ADS  Google Scholar 

  19. B. J. Laurenzi and A. Flamberg, Int. J. of Quantum Chemistry 11, 869 (1977).

    Article  Google Scholar 

  20. K. Pachucki, Phys. Rev. A 53, 2092 (1996).

    Article  ADS  Google Scholar 

  21. K. Pachucki, Phys. Rev. A 60, 3593 (1999).

    Article  ADS  Google Scholar 

  22. M. K. Sundaresan and P. J. S. Watson, Phys. Rev. Lett. 29, 15 (1972).

    Article  ADS  Google Scholar 

  23. E. Borie and G. A. Rinker, Rev. Mod. Phys. 54, 67 (1982).

    Article  ADS  Google Scholar 

  24. S. G. Karshenboim, Can. J. Phys. 76, 169 (1998); Zh. Eksp. Teor. Fiz. 116, 1575 (1999) [JETP 89, 850 (1999)].

    Article  ADS  Google Scholar 

  25. A. Veitia and K. Pachucki, Phys. Rev. A 69, 042501 (2004).

    Article  ADS  Google Scholar 

  26. E. H. Wichmann and N. M. Kroll, Phys. Rev. 101, 843 (1956).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. B. Fricke, Z. Phys. 218, 495 (1969).

    Article  ADS  Google Scholar 

  28. P. Vogel, At. Data Nucl. Data Tables 14, 599 (1974).

    Article  ADS  Google Scholar 

  29. M. I. Eides, H. Grotch, and V. A. Shelyuto, Phys. Rep. C 342, 63 (2001).

    Article  MATH  ADS  Google Scholar 

  30. G. A. Rinker, Comput. Phys. Commun. 16, 221 (1979).

    Article  ADS  Google Scholar 

  31. G. A. Rinker, Phys. Rev. A 14, 18 (1976).

    Article  ADS  Google Scholar 

  32. E. Borie and G. A. Rinker, Phys. Rev. A 18, 324 (1978).

    Article  ADS  Google Scholar 

  33. M.-Y. Chen, Phys. Rev. Lett. 34, 341 (1975).

    Article  ADS  Google Scholar 

  34. L. Wilets and G. A. Rinker, Jr., Phys. Rev. Lett. 34, 339 (1975).

    Article  ADS  Google Scholar 

  35. D. H. Fujimoto, Phys. Rev. Lett. 35, 341 (1975).

    Article  ADS  Google Scholar 

  36. E. Borie, Nucl. Phys. A 267, 485 (1976).

    Article  ADS  Google Scholar 

  37. J. Calmet and D. A. Owen, J. Phys. B: At. Mol. Opt. Phys. 12, 169 (1979).

    Article  ADS  Google Scholar 

  38. H. A. Bethe, Phys. Rev. 72, 339 (1947).

    Article  ADS  Google Scholar 

  39. J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics, McGraw-Hill Book Co., NY, 1964.

    Google Scholar 

  40. R. Barbieri, M. Caffo, and E. Remiddi, Lett. Nuovo Cimento 7, 60 (1973).

    Article  Google Scholar 

  41. H. Suura and E. Wichmann, Phys. Rev. 105, 1930 (1957).

    Article  ADS  Google Scholar 

  42. A. Peterman, Phys. Rev. 105, 1931 (1957).

    Article  ADS  Google Scholar 

  43. H. H. Elend, Phys. Lett. 20, 682 (1966); Errata 21, 720 (1966).

    Article  ADS  Google Scholar 

  44. G. Erickson and H. H. Liu, preprint UCD-CNL-81, 1968.

    Google Scholar 

  45. E. Borie, Helv. Physica Acta 48, 671 (1975).

    Google Scholar 

  46. V. N. Folomeshkin, Yad. Fiz. 19, 1157 (1974) [Sov. J. Nucl. Phys. 19, 592 (1974)].

    Google Scholar 

  47. M. K. Sundaresan and P. J. S. Watson, Phys. Rev. D 11, 230 (1975).

    Article  ADS  Google Scholar 

  48. V. P. Gerdt, A. Karimkhodzhaev, and R. N. Faustov, Proc. of the Int.Workshop on High Energy Phys. and Quantum Filed Theory, 1978, p. 289.

    Google Scholar 

  49. E. Borie, Z. Phys. A 302, 187 (1981).

    Article  ADS  Google Scholar 

  50. J. L. Friar, J. Martorell, and D. W. L. Sprung, Phys. Rev. A 59, 4061 (1999).

    Article  ADS  Google Scholar 

  51. R. N. Faustov and A. P. Martynenko, Eur. Phys. Jdirect C 6, 1 (1999); Samara State University preprint SSU-HEP-99/07, hep-ph/9906315, January 2000.

    Article  Google Scholar 

  52. R. N. Faustov and A. P. Martynenko, Yad. Phys. 64, 1358 (2001) [Phys. Atom. Nuclei 64, 1282 (2001)].

    Google Scholar 

  53. J. L. Friar, Ann. Phys. (NY) 122, 151 (1979).

    Article  ADS  Google Scholar 

  54. R. N. Faustov and A. P. Martynenko, Yad. Phys. 63, 915 (2000) [Phys. Atom. Nuclei 63, 845 (2000)].

    Google Scholar 

  55. J. L. Friar and G. L. Payne, Phys. Rev. A 56, 5173 (1997).

    Article  ADS  Google Scholar 

  56. J. L. Friar and I. Sick, Phys. Rev. A 72, 040503(R) (2005).

    Article  Google Scholar 

  57. S. A. Startsev, V. A. Petrun’kin, and A. L. Khomkin, Yad. Fiz. 23, 1233 (1976) [Sov. J. Nucl. Phys. 23, 656 (1976)].

    Google Scholar 

  58. R. Rosenfelder, Phys. Lett. B 479, 381 (2000).

    Article  ADS  Google Scholar 

  59. L. A. Borisoglebsky and E. E. Trofimenko, Phys. Lett. B 81, 175 (1979).

    Article  ADS  Google Scholar 

  60. J. L. Friar, Zeit. f. Physik A 292, 1 (1979); ibid. 303, 84 (1981)

    Article  ADS  Google Scholar 

  61. W. A. Barker and F. N. Glover, Phys. Rev. 99, 317 (1955).

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Eides, M.I., Grotch, H., Shelyuto, V.A. (2007). Lamb Shift in Light Muonic Atoms. In: Theory of Light Hydrogenic Bound States. Springer Tracts in Modern Physics, vol 222. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45270-2_7

Download citation

Publish with us

Policies and ethics