Skip to main content

A Dynamic Algorithm for Maintaining Graph Partitions

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1851))

Abstract

We propose an algorithm for maintaining a partition of dynamic planar graphs motivated by applications in load balancing for solving partial differential equations on a shared memory multiprocessor. We consider planar graphs of bounded face sizes that can be modified by local insertions or deletions of vertices or edges so that planarity is preserved. In our paper we describe a data structure that can be updated in O(log n) time after any such modification of the graph, where n is the current size of the graph, and allows an almost optimal partition of a required size to be maintained. More precisely, the size of the separator is within an O(n δ) factor of the optimal for the class of planar graphs, where δ is any positive constant, and can be listed in time proportional to its size. The dynamic data structure occupies O(n) space and can initially be constructed in time linear to the size of the original graph.

This work was partially supported by the EPA grant R82-5207-01-0, EPSRC grant GR/M60750, and RTDF grant 98/99-0140. A two-page abstract of this work appeared in the proceedings of CCCG’98.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lyudmil Aleksandrov and Hristo N. Djidjev. Linear algorithms for partitioning embedded graphs of bounded genus. SIAM Journal on Discrete Mathematics, 9:129–150, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  2. Noga Alon, Paul Seymour, and Robin Thomas. A separator theorem for graphs with an excluded minor and its applications. Proceedings of the 22nd Symp. on Theory of Computing, pages 293–299, 1990.

    Google Scholar 

  3. D. Armon and J. Reif. A dynamic separator algorithm. In Proc. 3rd Worksh. Algorithms and Data Structures, pages 107–118. Lecture Notes in Computer Science 709, Springer-Verlag, Berlin, 1993.

    Google Scholar 

  4. S.N. Bhatt and F.T. Leighton. A framework for solving VLSI graph layout problems. Journal of Computer and System Sciences, 28:300–343, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  5. J.H. Conway and N.J.A. Sloane. Sphere Packings, Lattices and Groups. Springer-Verlag, 1988.

    Google Scholar 

  6. Hristo N. Djidjev. A separator theorem. Compt. rend. Acad. bulg. Sci., 34:643–645, 1981.

    MATH  MathSciNet  Google Scholar 

  7. G.N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications. SIAM Journal on Computing, 16:1004–1022, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  8. John R. Gilbert, Joan P. Hutchinson, and Robert E. Tarjan. A separator theorem for graphs of bounded genus. J. Algorithms, 5:391–407, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  9. John R. Gilbert and Robert E. Tarjan. The analysis of a nested dissection algorithm. Numerische Mathematik, 50:377–404, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  10. Michael T. Goodrich. Planar separators and parallel polygon triangulation. Proceedings of 24th Symp. on Theory of Computing, pages 507–516, 1992.

    Google Scholar 

  11. S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing. Science, pages 671–680, 1983.

    Google Scholar 

  12. C.E. Leiserson. Area efficient VLSI computation. In Foundations of Computing. MIT Press, Cambridge, MA, 1983.

    Google Scholar 

  13. B.W. Kernighan & S. Lin. An Efficient Heuristic Procedure for Partitioning Graphs. Bell Systems Technical Journal, 49:291–308, 1970.

    Google Scholar 

  14. Richard J. Lipton, D. J. Rose, and Robert E. Tarjan. Generalized nested dissection. SIAM J. Numer. Anal., 16:346–358, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  15. Richard J. Lipton and Robert E. Tarjan. A separator theorem for planar graphs. SIAM J. Appl. Math, 36:177–189, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  16. Richard J. Lipton and Robert E. Tarjan. Applications of a planar separator theorem. SIAM Journal on Computing, 9:615–627, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  17. Gary L. Miller, Shang-Hua Teng, and Stephen A. Vavasis. A unified geometric approach to graph separators. Proceedings of the 32nd FOCS, pages 538–547, 1991.

    Google Scholar 

  18. A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl, 11(3):430–452, July 1990.

    Article  MATH  MathSciNet  Google Scholar 

  19. Eric J. Schwabe, Guy E. Blelloch, Anja Feldmann, Omar Ghattas, John R. Gilbert, Gary L. Miller, David R. O’Hallaron, Jonathan R. Shewchuk, and Shang-Hua Teng. A Separator-Based Framework for Automated Partitioning and Mapping of Parallel Algorithms for Numerical Solution of PDEs. In Proceedings of the First Annual Summer Institute on Issues and Obstacles in the Practical Implementation of Parallel Algorithms and the Use of Parallel Machines in Parallel Computation (DAGS/PC’ 92, pages 48–62. Dartmouth Institute for Advanced Graduate Studies, June 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aleksandrov, L.G., Djidjev, H. (2000). A Dynamic Algorithm for Maintaining Graph Partitions. In: Algorithm Theory - SWAT 2000. SWAT 2000. Lecture Notes in Computer Science, vol 1851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44985-X_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-44985-X_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67690-4

  • Online ISBN: 978-3-540-44985-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics