Nonlinear Spectral Finite Element Model for Analysis of Wave Propagation in Solid with Internal Friction and Dissipation

  • D. Roy Mahapatra
  • S. Gopalakrishnan
Conference paper

DOI: 10.1007/3-540-44843-8_81

Part of the Lecture Notes in Computer Science book series (LNCS, volume 2668)
Cite this paper as:
Mahapatra D.R., Gopalakrishnan S. (2003) Nonlinear Spectral Finite Element Model for Analysis of Wave Propagation in Solid with Internal Friction and Dissipation. In: Kumar V., Gavrilova M.L., Tan C.J.K., L’Ecuyer P. (eds) Computational Science and Its Applications — ICCSA 2003. ICCSA 2003. Lecture Notes in Computer Science, vol 2668. Springer, Berlin, Heidelberg

Abstract

A geometrically non-linear Spectral Finite Flement Model (SFEM) including hysteresis, internal friction and viscous dissipation in the material is developed and is used to study non-linear dissipative wave propagation in elementary rod under high amplitude pulse loading. The solution to non-linear dispersive dissipative equation constitutes one of the most difficult problems in contemporary mathematical physics. Although intensive research towards analytical developments are on, a general purpose cumputational discretization technique for complex applications, such as finite element, but with all the features of travelling wave (TW) solutions is not available. The present effort is aimed towards development of such computational framework. Fast Fourier Transform (FFT) is used for transformation between temporal and frequency domain. SFEM for the associated linear system is used as initial state for vector iteration. General purpose procedure involving matrix computation and frequency domain convolution operators are used and implemented in a finite element code. Convergnence of the spectral residual force vector ensures the solution accuracy. Important conclusions are drawn from the numerical simulations. Future course of developments are highlighted.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • D. Roy Mahapatra
    • 1
  • S. Gopalakrishnan
    • 1
  1. 1.Department of Aerospace EngineeringIndian Institute of ScienceBangaloreINDIA

Personalised recommendations