Skip to main content

Evaluation of equilibrium and nonequilibrium density gradients in an analytical ultracentrifuge by calibration with marker particles

  • Conference paper
  • First Online:
Book cover Analytical Ultracentrifugation VI

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 119))

Abstract

Density gradient measurements inside an analytical ultracentrifuge (AUC) are an excellent tool for characterizing nanoparticles in the 10—1000-nm diameter range. Because of its very high resolution (i.e. its fractionation power according to the particle density and its high precision) it is possible to analyze the chemical nature of nanoparticles, especially of complex colloidal mixtures. This means that AUC density gradient measurements are a kind of particle density spectroscopy. Usually, the relation between the radial position and particle density, ρ(r), inside an AUC density gradient is calculated by using the well-known (barometrical) equilibrium equation in the formulation of Hermans and Ende (1963); however, this equation for an ideal bimodal density gradient mixture fails in some cases. The higher the content of the heavy component, and the bigger the difference between the actual density gradient being formed and the equilibrium gradient, the bigger the failure or the deviation from ideality. We report a systematic study of these deviations using a marker nanoparticle system of 11 precisely characterized ethylhexyl acrylate/methyl acrylate copolymer latices with known nearly equidistant particle densities. During this study we also learned to use this 11-marker system as a pragmatic and simple calibration system for aqueous density gradients, thereby reducing considerably the error of the measurements in absolute nanoparticle densities. Some application examples are presented. One advantage of the new calibration technique is that higher particle densities are now accessible. Another advantage is the reduction in the measuring time. We no longer have to wait till equilibrium is reached (sometimes up to 90 h!); instead already after 9 h we get reasonable results. This means our static density gradient now approaches a “dynamic” one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lange H (1980) Colloid Polym Sci 258:1077–1085

    Article  CAS  Google Scholar 

  2. Mächtle W (1984) Colloid Polym Sci 262:270–282

    Article  Google Scholar 

  3. Mächtle W (1992) In: Harding SE, et al (ed) AUC in biochemistry and polymer science. Royal Society of Chemistry, Cambridge, pp 147–175

    Google Scholar 

  4. Mächtle W, Ley G, Rieger J (1995) Colloid Polym Sci 273:708–716

    Article  Google Scholar 

  5. Mächtle W, Ley G, Steib J (1995) Colloid Polym Sci 99:144–153

    Article  Google Scholar 

  6. Kirsch S, Doerk A, Bartsch E, Sillescu H, Landfester K, Spieß W, Mächtle W (1999) Macromolecules 32:4508–4518

    Article  CAS  Google Scholar 

  7. Mächtle W (1999) Prog Colloid Polym Sci 113:1–9

    Article  Google Scholar 

  8. Leyrer RJ, Mächtle W (2000) Macromol Chem Phys 201:1235–1243

    Article  CAS  Google Scholar 

  9. Hermans JJ, Ende HA (1963) J Polym Sci Part C Polym Symp 1:161–177

    Article  Google Scholar 

  10. Hearst JE, Vinograd J (1961) Proc Natl Acad Sci USA 47:999–1004

    Article  CAS  Google Scholar 

  11. Hearst JE, Vinograd J (1961) Proc Natl Acad Sci USA 47:1005–1014

    Article  CAS  Google Scholar 

  12. Munk P (1982) Macromolecules 15:500–505

    Article  CAS  Google Scholar 

  13. Lechner MD (1997), Macromol Rapid Commun 18:781–786

    Article  CAS  Google Scholar 

  14. Lechner MD, Mächtle W, Sedlack U (1997) Prog Colloid Polym Sci 107:148–153

    Article  CAS  Google Scholar 

  15. Lechner MD, Borchard W (1999) Eur Polym J 35:371–376

    Article  CAS  Google Scholar 

  16. Lechner MD, Mächtle W, Sedlack U (1997) Prog Colloid Polym Sci 107:154–158

    Article  CAS  Google Scholar 

  17. Mächtle W (1999) Biophys J 76:1080–1091

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

W. Borchard A. Straatmann

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag

About this paper

Cite this paper

Mächtle, W., Lechner, M.D. (2002). Evaluation of equilibrium and nonequilibrium density gradients in an analytical ultracentrifuge by calibration with marker particles. In: Borchard, W., Straatmann, A. (eds) Analytical Ultracentrifugation VI. Progress in Colloid and Polymer Science, vol 119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44672-9_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-44672-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42489-5

  • Online ISBN: 978-3-540-44672-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics