Skip to main content

Forces in Optical Near-Fields

  • Chapter
  • First Online:

Part of the book series: Topics in Applied Physics ((TAP,volume 81))

Abstract

In this article we use classical electrodynamics to derive the conservation law for linear momentum in an optical field. The net force exerted on an arbitrary object is determined by Maxwell’s stress tensor. It is shown that in the limiting case of an infinitely extended object, the formalism renders the known expressions for radiation pressure. Similarly, in the small object limit, we obtain the familiar expressions for gradient and scattering forces. The theory is applied to calculate the trapping forces near a laser-illuminated metal tip.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Frisch, Experimenteller Nachweis des Einsteinischen Strahlungsrückstosses. Z. Phys. 86, 42 (1933)

    Article  ADS  Google Scholar 

  2. A. Ashkin, Optical trapping and manipulation of neutral particles using lasers, Proc. Natl. Acad. Sci. USA 94, 4853 (1987)

    Article  ADS  Google Scholar 

  3. K. Svoboda, S. M. Block, Biological Applications of Optical Forces, Ann. Rev. Biophys. Biomol. Struct. 23, 247 (1994)

    Article  Google Scholar 

  4. D. W. Pohl, in Forces in Scanning Probe Methods of NATO Advanced Study Institute, Series E 286, H.-J. Güntherodt, D. Anselmetti, E. Meyer (Eds.) (Kluwer, Dordrecht 1995) p. 235

    Google Scholar 

  5. B. Pringsheim, Zwei Bemerkungen über den Unterschied von Lumineszenz-und Temperaturstrahlung, Z. Phys. 57, 739 (1929)

    Article  ADS  Google Scholar 

  6. Hänsch T. W., A. L. Schawlow, Cooling of gases by laser radiation, Opt. Commun. 13, 68 (1975)

    Article  ADS  Google Scholar 

  7. Y. Shimizu, H. Sasada, Mechanical force in laser cooling and trapping, Am. J. Phys. 66, 960 (1998)

    Article  ADS  Google Scholar 

  8. S. Stenholm, The semiclassical theory of laser cooling, Rev. Mod. Phys. 58, 699 (1986)

    Article  ADS  Google Scholar 

  9. G. Arfken, Mathematical Methods for Physicists (3rd ed.) (Academic Press, New York 1985)

    Google Scholar 

  10. S. Chu, J. E. Bjorkholm, A. Ashkin, A. Cable, Experimental observation of optically trapped atoms, Phys. Rev. Lett. 57, 314 (1986)

    Article  ADS  Google Scholar 

  11. C. N. Cohen-Tannoudji, W. D. Phillips, New mechanisms for laser cooling, Physics Today 10, 33 (1990)

    Article  Google Scholar 

  12. S. Chu, Laser trapping of neutral particles, Scientific Am. 2, 71 (1992)

    ADS  Google Scholar 

  13. G. B. Lubkin, Experimenters cool Helium below single-photon recoil limit in three dimensions, Physics Today 1, 22 (1996)

    Article  Google Scholar 

  14. O. J. F. Martin, A. Dereux, C. Girard, Iterative scheme for computing exactly the total field propagating in dielectric structures of arbitrary shape, J. Opt. Soc. Am. A 11, 1073 (1994)

    Article  ADS  Google Scholar 

  15. L. Novotny, Allowed and forbidden light in near-field optics II. Interacting dipolar particles, J. Opt. Soc. Am. A 14, 105 (1997)

    Article  ADS  Google Scholar 

  16. L. Novotny, E. J. Sanchez, X. S. Xie, Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams, Ultramicroscopy 71, 21 (1998)

    Article  Google Scholar 

  17. O. J. F. Martin, C. Girard, Controlling and tuning strong optical field gradients at a local probe microscope tip apex, Appl. Phys. Lett. 70, 705 (1997)

    Article  ADS  Google Scholar 

  18. W. Denk, D. W. Pohl, Near-field optics: Microscopy with nanometer-size fields, J. Vac. Sci. and Technol. B 9, 510 (1991)

    Article  ADS  Google Scholar 

  19. L. Novotny, R. X. Bian, X. S. Xie, Theory of nanometric optical tweezers, Phys. Rev. Lett. 79, 645 (1997)

    Article  ADS  Google Scholar 

  20. D. V. Labeke, D. Barchiesi, Theoretical problems in scanning near-field optical microscopy, in Near-Field Optics D. W. Pohl, D. Courjon (Eds.) Vol. 242, NATO Advanced Study Institute, Series E, (Kluwer, Academic 1993) p. 157

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Novotny, L. (2001). Forces in Optical Near-Fields. In: Kawata, S. (eds) Near-Field Optics and Surface Plasmon Polaritons. Topics in Applied Physics, vol 81. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44552-8_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-44552-8_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41502-2

  • Online ISBN: 978-3-540-44552-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics