Chapter

Medical Data Analysis

Volume 1933 of the series Lecture Notes in Computer Science pp 49-54

Date:

Hierarchical Clustering of Functional MRI Time-Series by Deterministic Annealing

  • Axel WismüllerAffiliated withInstitut für Radiologische Diagnostik, Ludwig-Maximilians-Universität München
  • , Dominik R. DerschAffiliated withIntegral Energy Corp.
  • , Bernadette LipinskiAffiliated withMax Planck Institute of Psychiatry
  • , Klaus HahnAffiliated withInstitut für Radiologische Diagnostik, Ludwig-Maximilians-Universität München
  • , Dorothee AuerAffiliated withMax Planck Institute of Psychiatry

* Final gross prices may vary according to local VAT.

Get Access

Abstract

In this paper, we present a neural network approach to hierarchical unsupervised clustering of functional magnetic resonance imaging (fMRI) time-sequences of the human brain by self-organized fuzzy minimal free energy vector quantization (VQ). In contrast to conventional model-based fMRI data analysis techniques, this deterministic annealing procedure does not imply presumptive knowledge of expected stimulus-response patterns, and, thus, may be applied to fMRI experiments in which the time course of the stimulus is unknown like in spontaneously occurring events, e.g. hallucinations, epileptic fits, or sleep. Moreover, as minimal free energy VQ represents a hierarchical data analysis strategy implying repetitive cluster splitting, it can provide a natural approach to the subclassification task of activated brain regions on different scales of resolution with respect to fine-grained differences in pixel dynamics.