Skip to main content

Nanotube Growth and Characterization

  • Chapter
  • First Online:
Book cover Carbon Nanotubes

Part of the book series: Topics in Applied Physics ((TAP,volume 80))

Abstract

This chapter presents a review of various growth methods for carbon nanotubes. Recent advances in nanotube growth by chemical vapor deposition (CVD) approaches are summarized. CVD methods are promising for producing high quality nanotube materials at large scales. Moreover, controlled CVD growth strategies on catalytically patterned substrates can yield ordered nanotube architectures and integrated devices that are useful for fundamental characterizations and potential applications of nanotube molecular wires.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Iijima, Nature 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  2. S. Iijima, T. Ichihashi, Nature 363, 603–605 (1993)

    Article  CAS  Google Scholar 

  3. M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego 1996)

    Google Scholar 

  4. C. Dekker, Phys. Today 52, 22–28 (1999)

    Article  CAS  Google Scholar 

  5. T. W. Ebbesen, P. M. Ajayan, Nature 358, 220–222 (1992)

    Article  CAS  Google Scholar 

  6. D. S. Bethune, C. H. Kiang, M. DeVries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Nature 363, 605–607 (1993)

    Article  CAS  Google Scholar 

  7. A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, Science 273, 483–487 (1996)

    Article  CAS  Google Scholar 

  8. C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. Delachapelle, S. Lefrant, P. Deniard, R. Lee, J. E. Fischer, Nature 388, 756–758 (1997)

    Article  CAS  Google Scholar 

  9. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y.-S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley, Science 280, 1253–1256 (1998)

    Article  CAS  Google Scholar 

  10. G. G. Tibbetts, J Cryst. Growth 66, 632–638 (1984)

    Article  CAS  Google Scholar 

  11. G. G. Tibbetts, Carbon 27, 745–747 (1989)

    Article  Google Scholar 

  12. G. G. Tibbetts: Filaments and Composites, in Carbon Fibers (Kluwer Academic, Amsterdam 1990) pp. 73–94

    Google Scholar 

  13. G. G. Tibbetts, J. Cryst. Growth 73, 431–438 (1985)

    Article  CAS  Google Scholar 

  14. G. G. Tibbetts, M. G. Devour, E. J. Rodda, Carbon 25, 367–375 (1987)

    Article  CAS  Google Scholar 

  15. R. T. K. Baker, Physics and Chemistry of Carbon, Vol. 14, P. Walker, P. Thrower, (Eds.) (Dekker, New York 1978) pp. 83–165

    Google Scholar 

  16. R. T. K. Baker, Carbon 27, 315–323 (1989)

    Article  CAS  Google Scholar 

  17. R. T. K. Baker, L. L. Murrell, (Eds.), Novel Materials in Heterogeneous Catalysis (Washington, DC 1990)

    Google Scholar 

  18. H. G. Tennent, Hyperion Catalysis International, Inc., US patent no. 4663230, USA, (1987)

    Google Scholar 

  19. C. E. Snyder, W. H. Mandeville, H. G. Tennent, L. K. Truesdale, Hyperion Catalysis International, US patent, (1989)

    Google Scholar 

  20. J. Kong, A. M. Cassell, H. Dai, Chem. Phys. Lett. 292, 567–574 (1998)

    Article  CAS  Google Scholar 

  21. J. Kong, H. Soh, A. Cassell, C. F. Quate, H. Dai, Nature 395, 878–879 (1998)

    Article  CAS  Google Scholar 

  22. A. Cassell, J. Raymakers, J. Kong, H. Dai, J. Phys. Chem. 103, 6484–6492 (1999)

    CAS  Google Scholar 

  23. H. Dai, J. Kong, C. Zhou, N. Franklin, T. Tombler, A. Cassell, S. Fan, M. Chapline, J. Phys. Chem. 103, 11246–11255 (1999)

    CAS  Google Scholar 

  24. J. Hafner, M. Bronikowski, B. Azamian, P. Nikolaev, D. Colbert, R. Smalley, Chem. Phys. Lett. 296, 195–202 (1998)

    Article  CAS  Google Scholar 

  25. N. Franklin, H. Dai, Adv. Mater. 12, 890 (2000)

    Article  CAS  Google Scholar 

  26. M. Su, B. Zheng, J. Liu, Chem. Phys. Lett. 322, 321–326 (2000)

    Article  CAS  Google Scholar 

  27. E. Flahaut, A. Govindaraj, A. Peigney, C. Laurent, C. N. Rao, Chem. Phys. Lett. 300, 236–242 (1999)

    Article  CAS  Google Scholar 

  28. J.-F. Colomer, C. Stephan, S. Lefrant, G. V. Tendeloo, I. Willems, Z. Kánya, A. Fonseca, C. Laurent, J. B.Nagy, Chem. Phys. Lett. 317, 83–89 (2000)

    Article  CAS  Google Scholar 

  29. S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov, J. B. Nagy, Science 265, 635–639 (1994)

    Article  CAS  Google Scholar 

  30. H. Cheng, F. Li, G. Su, H. Pan, M. Dresselhaus, Appl. Phys. Lett. 72, 3282–3284 (1998)

    Article  CAS  Google Scholar 

  31. P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smalley, Chem. Phys. Lett. 313, 91–97 (1999)

    Article  CAS  Google Scholar 

  32. H. Dai, Phys. World (2000)

    Google Scholar 

  33. W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, G. Wang, Science 274, 1701–1703 (1996)

    Article  CAS  Google Scholar 

  34. Z. Pan, S. S.Xie, B. Chang, C. Wang, Nature 394, 631–632 (1998)

    Article  CAS  Google Scholar 

  35. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, Science 282, 1105–1107 (1998)

    Article  CAS  Google Scholar 

  36. S. Fan, M. Chapline, N. Franklin, T. Tombler, A. Cassell, H. Dai, Science 283, 512–514 (1999)

    Article  CAS  Google Scholar 

  37. A. Cassell, N. Franklin, T. Tombler, E. Chan, J. Han, H. Dai, J. Am. Chem. Soc. 121, 7975–7976 (1999)

    Article  CAS  Google Scholar 

  38. H. Soh, C. Quate, A. Morpurgo, C. Marcus, J. Kong, H. Dai, Appl. Phys. Lett. 75, 627–629 (1999)

    Article  CAS  Google Scholar 

  39. A. Morpurgo, J. Kong, C. Marcus, H. Dai, Science 286, 263–265 (1999)

    Article  CAS  Google Scholar 

  40. C. Zhou, J. Kong, H. Dai, Appl. Phys. Lett. 76, 1597–1599 (1999)

    Article  Google Scholar 

  41. J. Kong, N. Franklin, C. Zhou, M. Chapline, S. Peng, K. Cho, H. Dai, Science 287, 622–625 (2000)

    Article  CAS  Google Scholar 

  42. C. Zhou, J. Kong, H. Dai, Phys. Rev. Lett. 84, 5604 (2000)

    Article  CAS  Google Scholar 

  43. T. Tombler, C. Zhou, J. Kong, H. Dai, Appl. Phys. Lett. 76, 2412–2414 (2000)

    Article  CAS  Google Scholar 

  44. T. Tombler, C. Zhou, L. Alexeyev, J. Kong, H. Dai, L. Liu, C. Jayanthi, M. Tang, S. Y. Wu, Nature 405, 769 (2000)

    Article  CAS  Google Scholar 

  45. S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, C. Dekker, Nature 386, 474–477 (1997)

    Article  CAS  Google Scholar 

  46. M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra, A. Zettl, A. Thess, R. E. Smalley, Science 275, 1922–1925 (1997)

    Article  CAS  Google Scholar 

  47. D. H. Cobden, M. Bockrath, N. G. Chopra, A. Zettl, P. McEuen, A. Rinzler, R. E. Smalley, Phys. Rev. Lett. 81, 681–684 (1998)

    Article  CAS  Google Scholar 

  48. M. Bockrath, D. Cobden, J. Lu, A. Rinzler, R. Smalley, L. Balents, P. McEuen, Nature 397, 598–601 (1999)

    Article  CAS  Google Scholar 

  49. J. Nygard, D. H. Cobden, M. Bockrath, P. L. McEuen, P. E. Lindelof, Appl. Phys. A 69, 297–304 (1999)

    Article  CAS  Google Scholar 

  50. J. Tersoff, Appl. Phys. Lett. 74, 2122–2124 (1999)

    Article  CAS  Google Scholar 

  51. S. Tans, A. Verschueren, C. Dekker, Nature 393, 49–52 (1998)

    Article  CAS  Google Scholar 

  52. R. Martel, T. Schmidt, H. R. Shea, T. Hertel, Ph. Avouris, Appl. Phys. Lett. 73, 2447–2449 (1998)

    Article  CAS  Google Scholar 

  53. C. L. Kane, E. J. Mele, Phys. Rev. Lett. 78, 1932–1935 (1997)

    Article  CAS  Google Scholar 

  54. M. Nardelli, J. Bernholc, Phys. Rev. B 60, R16338–16341 (1998)

    Article  Google Scholar 

  55. A. Rochefort, D. Salahub, Ph. Avouris, Chem. Phys. Lett. 297, 45–50 (1998)

    Article  CAS  Google Scholar 

  56. A. Rochefort, F. Lesage, D. Salhub, Ph. Avouris, Phys. Rev. B 60, 13824–13830 (1999)

    Article  CAS  Google Scholar 

  57. S. Paulson, M. Falvo, N. Snider, A. Helser, T. Hudson, A. Seeger, R. Taylor, R. Superfine, S. Washburn, Appl. Phys. Lett. 75, 2936–2938 (1999)

    Article  CAS  Google Scholar 

  58. L. Liu, C. Jayanthi, M. Tang, S. Y. Wu, T. Tombler, C. Zhou, L. Alexeyev, J. Kong, H. Dai, Phys. Rev. Lett. 84, 4950 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dai, H. (2001). Nanotube Growth and Characterization. In: Dresselhaus, M.S., Dresselhaus, G., Avouris, P. (eds) Carbon Nanotubes. Topics in Applied Physics, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-39947-X_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-39947-X_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41086-7

  • Online ISBN: 978-3-540-39947-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics