Skip to main content

Recurrent Quantum Neural Network and its Applications

  • Chapter
The Emerging Physics of Consciousness

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Summary

Although the biological body consists of many individual parts or agents, our experience is holistic. We suggest that collective response behavior is a key feature in intelligence. A nonlinear Schrödinger wave equation is used to model collective response behavior. It is shown that such a paradigm can naturally make a model more intelligent. This aspect has been demonstrated through an application — intelligent filtering — where complex signals are denoised without any a priori knowledge about either signal or noise. Such a paradigm has also helped us to model eye-tracking behavior. Experimental observations such as saccadic and smooth-pursuit eye-movement behavior have been successfully predicted by this model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amari, S. (1983). IEEE Trans SMC, SMC-13(5):741–748.

    MathSciNet  Google Scholar 

  2. Amit, D.J. (1989). Modeling Brain Function. Springer-Verlag, Berlin/Heidelberg.

    MATH  Google Scholar 

  3. Bahill, A.T. and Stark, L. (1979). Scientific American 240:84–93.

    Article  Google Scholar 

  4. Bahill, A.T., Iandolo, M.J., and Troost, B.T. (1980). Vision Research, 20:923–931.

    Article  Google Scholar 

  5. Behera, L. (2002). New Optimization Techniques in Engineering, chapter Parametric Optimization of a Fuzzy Logic Controller for Nonlinear Dynamical Systems using Evolutionary Computation. McGraw-Hill. New York.

    Google Scholar 

  6. Behera, L. and Sundaram, B. (2004). Proceedings, International Conference on Intelligent Sensors and Information Processing.

    Google Scholar 

  7. Behera, L., Gopal, M., and Chaudhury, S. (1996). IEEE Trans Neural Networks, 7(6):1401–1414.

    Article  Google Scholar 

  8. Behera, L., Chaudhury, S., and Gopal, M. (1998). IEE Proceedings Control Theory and Applications, 145(2):134–140.

    Article  Google Scholar 

  9. Behrman, E.C., Chandrashekar, V., Wang, Z., Belur, C.K., Steck, J.E., and Skinner, S.R. (2002). Physical Review Letters. Submitted.

    Google Scholar 

  10. Behrman, E.C., Nash, L.R., Steck, J.E., Chandrashekar, V.G., and Skinner, S.R. (2000). Information Sciences, 128(3–4):257–269.

    Article  MATH  MathSciNet  Google Scholar 

  11. Bialynicki-Birula, I. and Mycielski, J. (1976). Annals of Physics, 100:62–93.

    Article  ADS  MathSciNet  Google Scholar 

  12. Boyd, R.W. (1991). Nonlinear Optics. Academic Press. London.

    Google Scholar 

  13. Bucy, R.S. (1970). IEEE Proceedings, 58(6):854–864.

    Article  MathSciNet  Google Scholar 

  14. Cohen, M.A. and Grossberg, S. (1983). IEEE Trans Syst, Man and Cybernetics, 13:815–826.

    MATH  MathSciNet  Google Scholar 

  15. Davydov, A.S. (1982). Biology and Quantum Mechanics. Pergamon Press, Oxford.

    Google Scholar 

  16. Dawes, R.L. (1992). IJCNN Proceedings, 133.

    Google Scholar 

  17. Dawes, R.L. (1993). Rethinking Neural Networks: Quantum Fields and Biological Data, chapter — Advances in the theory of quantum neurodynamics. Erlbaum, Hillsdale, N.J.

    Google Scholar 

  18. Findlay, J.M. Brown, V., and Gilchrist, I.D. (2001). Vision Research, 41:87–95.

    Article  Google Scholar 

  19. Grewal, M.S. and Andrews, A.P. (2001). Kalman Filtering: Theory and Practice Using MATLAB. Wiley-Interscience. USA.

    Google Scholar 

  20. Gupta, S. and Zia, R.K.P. (2001). Journal of Computer and System Sciences, 63(3):355–383.

    Article  MATH  MathSciNet  Google Scholar 

  21. Hagan, S., Hameroff, S.R., and Tuszynski, J.A. (2002). Physical Review E, 65:061901.

    Article  ADS  Google Scholar 

  22. Atmanspacher, H. (2004). Discrete Dynamics, 8:51–73.

    Article  Google Scholar 

  23. Haykin, S. (2001). Communication Systems. John Wiley and Sons, Inc., 4th edn. New York.

    Google Scholar 

  24. Jackson, E. Atlee (1991). Perspectives of Nonlinear Dynamics. Cambridge. Cambridge University Press.

    MATH  Google Scholar 

  25. Kennedy, J. and Eberhart, R.C. (2001). Swarm Intelligence. Morgan Kauffman. USA.

    Google Scholar 

  26. Leung, H. and Kettner, R.E. (1997). Vision Research, 37(10):1347–1354.

    Article  Google Scholar 

  27. Mendel, J.M. (1971). IEEE Trans Automatic Control, AC-16:748–758.

    Article  Google Scholar 

  28. Mershin, A., Nanopoulos, D.V., and Skoulakis, E. (1999). Proc. Acad. Athens, 74:148–179.

    Google Scholar 

  29. Muehlenbein, H. and Thilo Mahnig. (2001). Foundations of Real-World Intelligence, chapter — Evolutionary Computation and Beyond. CSLI Publications. Stanford.

    Google Scholar 

  30. Penrose, R. (1994). Shadows of the Mind. Oxford University Press. Oxford.

    Google Scholar 

  31. Pola, J., and Wyatt, H.J. (1997). Vision Research, 37(18):2579–2595.

    Article  Google Scholar 

  32. Purushothaman, G. and Karayiannis, N.B. (1997). IEEE Tran. on Neural Networks, 8(3):679–693.

    Article  Google Scholar 

  33. Scott, A.C., Chu, F.Y.F., and McLaughlin, D.W. (1973). IEEE Proceedings, 61(10):1443–1483.

    Article  MathSciNet  ADS  Google Scholar 

  34. Sulem, C., Sulem, P.L., and Sulem, C. (1999). Nonlinear Schrödinger Equations: Self-Focusing and Wave Collapse. Springer-Verlag. (Applied Mathematical Sciences/139). New York.

    Google Scholar 

  35. Turing, A.M. (1950). Mind, 59:433–460.

    Article  MathSciNet  Google Scholar 

  36. Tuszynski, J.A., Hameroff, S.R., Sataric, M.V., Trpisova, B., and Nip, M.L.A. (1995). Journal of Theoretical Biology, 174:371–380.

    Article  Google Scholar 

  37. Vitiello, G. (1995). International Journal of Modern Physics B, 9:973–989.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Behera, L., Kar, I., Elitzur, A.C. (2006). Recurrent Quantum Neural Network and its Applications. In: Tuszynski, J.A. (eds) The Emerging Physics of Consciousness. The Frontiers Collection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36723-3_9

Download citation

Publish with us

Policies and ethics