Skip to main content

Impact of Climate and Land Use Change on River Discharge and the Production, Transport and Deposition of Fine Sediment in the Rhine basin - a summary of recent results

  • Chapter
  • First Online:
Book cover Long Term Hillslope and Fluvial System Modelling

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 101))

  • 357 Accesses

Abstract

Over the past decennia, the palaeogeographic development of the Rhine-Meuse delta in the Netherlands has been extensively studied and an extremely detailed database of the Holocene delta architecture has been established. The delta offers a unique palaeo-environment to study both palaeogeography and avulsions on a timescale of millenia, because of the relatively complete geological record, as a result of rapid aggradation during the Holocene, governed by relative sealevel rise and land subsidence. The palaeogeographic reconstruction provided many new insights in the characteristics of the fluvial system, such as period of existence of individual channel belts, avulsion frequency and the factors influencing these characteristics over time scales of centuries to millennia. In recent years, research attention also became focused on the Rhine basin, which is the main source area of the water and sediment for the delta. These studies considered a decadal to century time scale, and aimed at assessing the potential impacts of future changes in climate and land use on the river Rhine discharge regime as well as on the production of fine sediment and the net transport of wash load from the upstream basin to the lower Rhine delta. For this purpose, a suite of GIS-embedded models has been developed that simulates this sequence of processes. The results indicate that climate change may accelerate erosion rates. However, land use changes, that foresee a reduction in arable land, lead to a net reduction of erosion in the German part of the basin. Due to inefficient sediment delivery, increasing erosion in the Alps has little effect on the sediment load farther downstream. Suspended sediment loads transported into the lower delta are expected to decrease by 13 %. Due to the combined effect of increased peak flows, discharge-dependent sediment transport and trapping efficiencies of floodplains, long-term average sedimentation rates at low floodplain may decrease, while sedimentation rates at high floodplains may accelerate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asselman, N.E.M. (1997): Suspended sediment in the Rhine. The impact of climate change on erosion, transport and deposition, PhD. Thesis, Utrecht University, Netherlands Geographical Studies, 234.

    Google Scholar 

  • Asselman, N.E.M. (1999): The impacts of climate change in climate and land use on transport and deposition of fine suspended sediment in the river Rhine. Report of the NRP project 952210. Lelystad, Rijkswaterstaat-RIZA.

    Google Scholar 

  • Asselman, N.E.M. (2000): Fitting and interpretation of sediment rating curves. Journal of Hydrology, 234: 228–248.

    Article  Google Scholar 

  • Auerswald, K. and Schmidt, F. (1986): Atlas der Erosionsgefährdung in Bayern. Karten zum flächenhaften Bodenabtrag durch Regen. GLA-Fachberichte 1. München.

    Google Scholar 

  • Berendsen, H.J.A. (1982): De genese van het landschap in het zuiden van de provincie Utrecht, een fysisch-geografische studie. Ph.D. Thesis (with summary in English), Utrechtse Geografische Studies, 10.

    Google Scholar 

  • Berendsen, H.J.A. and Stouthamer, E. (2000): Late Weichselian and Holocene palaeogeography of the Rhine-Meuse delta. Palaeogeography, Palaeoclimatology and Palaeoecology, 161(3/4): 311–335.

    Article  Google Scholar 

  • Berendsen, H.J.A. and Stouthamer, E. (2001): Palaeogeography development of the Rhine-Meuse delta, The Netherlands. Van Gorcum, Assen.

    Google Scholar 

  • BfG (1985): Untersuchung der Abfluß-und Geschiebeverhältnisse des Rheins. Zusammenfassender Bericht über den Stand der Untersuchungen im November 1985 für die RE B,C und A/Geschiebe. Koblenz: Bundesanstalt für Gewässerkunde.

    Google Scholar 

  • CEC (1985): Soil Map of the European Communities at 1:1,000,000. CEC-DGVI, Brussels-Luxembourg.

    Google Scholar 

  • De Roo, A.P.J., Wesseling, C.G., Jetten, V.G., and Ritsema, C.J. (1995): LISEM. A user guide. Version 3.0. Department of Physical Geography, Utrecht University, The Netherlands.

    Google Scholar 

  • Dickinson, W.T., Rudra, R.P., and Clark, D.J. (1986): A delivery ratio approach for seasonal transport of sediment. In: Drainage Basin Sediment Delivery. IAHS Publicatio No. 159: 237–251.

    Google Scholar 

  • Dickinson, W.T., and Rudra, R.P. (1990): GAMES. The Guelph model for evaluating effects of Agricultural Management Systems on Erosion and Sedimentation. User’s Manual, Version 3.01, University of Guelph, Technical Report: 126–86.

    Google Scholar 

  • Dickinson, W.T., Rudra, R.P., Sharma, D.N., and Ahmed, S.M. (1992): Planning sediment monitoring programs using a watershed model. In: Erosion and sediment transport monitoring programs in river basins. IAHS Publication No. 210.

    Google Scholar 

  • Dikau, R. (1986): Experimentelle Untersuchungen zu Oberflächenabflu und Bodenabtrag von Meßparzellen und Landwirtschaftlichen Nutzflächen, Heidelberger Geographische Arbeiten 81.

    Google Scholar 

  • Duijsings, J.J.H.M. (1986): Seasonal variation in the sediment delivery ratio of a forested drainage basin in Luxembourg. In: Hadley, R.F. (ed): Drainage basin sediment delivery. IAHS Publication 159. Wallingford: International Association of Hydrological Sciences, pp. 153–164.

    Google Scholar 

  • Govers, G. (1991): Rill erosion on arable land in Central Belgium: rates, controls and predictability. Catena, 18: 133–155.

    Article  Google Scholar 

  • Heidel, S.G. (1956): The Progressive lag of sediment concentration with flood waves. Transactions American Geophysical Union, 37: 56–66.

    Google Scholar 

  • Hulme, M., Conway, D., Brown, O. and Barrow, E. (1994): A 1961-90 baseline climatology and future climate change scenarios for Great Britain and Europe, part III: Climate change scenarios for Great Britain and Europe. Norwich: Climatic Research Unit.

    Google Scholar 

  • IPCC(1996): Climate Change 1995: The Science of Climate Change. Houghton, J.T., Meira Filho, L.G., Callander, B.A., Harris, N., Kattenberg, A., and Maskell, K. (Eds). Cambridge: University Press.

    Google Scholar 

  • Können, G.P., and Fransen, W. (1996): De toestand van het klimaat in Nederland 1996. De Bilt: KNMI.

    Google Scholar 

  • Kwadijk, J.C.J. (1993): The impact of climate change on the discharge of the river Rhine. PhD. Thesis, Utrecht University, Netherlands Geographical Studies, pp. 171.

    Google Scholar 

  • Meade, R.H. (1982): Sources, sinks, and storage of river sediment in the Atlantic drainage of the United States. The Journal of Geology, 90: 235–252.

    Article  Google Scholar 

  • Middelkoop, H. (1997): Embanked floodplains in the Netherlands. Geomorphological evolution over various time scales. PhD. Thesis, Utrecht University, Netherlands Geographical Studies, 224.

    Google Scholar 

  • Middelkoop, H. and Van der Perk, M. (1998): Modelling spatial patterns of overbank sedimentation on embanked floodplains. Geografiska Annaler, 80A: 95–109.

    Article  Google Scholar 

  • Middelkoop, H. (ed. 2000): The impact of climate change on the river Rhine and the implications for water management in the Netherlands’. Summary report of the NRP project 952210. Lelystad: RWS, RIZA.

    Google Scholar 

  • Nakamura, F., Maita, H., and Araya, T. (1995): Sediment routing analyses based on chronological changes in hillslope and riverbed morphologies. Earth Surface Processes and Landforms, 20: 333–346.

    Article  Google Scholar 

  • Peart, M.R., and Walling. D.E. (1982): Particle size characteristics of fluvial suspended sediment. In: Walling, D.E. (ed): Recent developments in the explanation and prediction of erosion and sediment yield (Proceedings of the Exeter symposium, July 1982). IAHS Publication 137. Wallingford: International Association of Hydrological Sciences, pp. 397–407.

    Google Scholar 

  • Pebesma, E.J., and Wesseling, C.G. (1998): GStat: a program for geostatistical modelling, prediction and simulation, Computers & Geosciences, 24: 17–31.

    Google Scholar 

  • Phillips, J.D. (1989): Hillslope and channel sediment delivery and impacts of soil erosion on water resources. In: Hadley, R.F. and Ongley, E.D. (eds), Sediment and the environment (Proceedings of the Baltimore Symposium, May 1989). IAHS Publication 184. Wallingford: IAHS, pp. 183–190.

    Google Scholar 

  • Renard, K.G., Foster, G.R., Weesies, G.A., and McCool, D.K. (1991): Predicting soil erosion by water-A guide to conservation planning with the revised universal soil loss equation (RUSLE). USDA-ARS.

    Google Scholar 

  • Richter, G. (1965): Bodenerosion; Schäden und gefährdete Gebiete in der Bundesrepublik Deutschland. Forschungen zur Deutschen Landeskunde, 152.

    Google Scholar 

  • Richter, G., and Negendank, J.F.W. (1977): Soil erosion processes and their measurement in the German area of the Moselle river. Earth Surface Processes, 2: 261–278.

    Article  Google Scholar 

  • Sauerborn, P. (1994): Die Erosivität der Niederschläge in Deutschland.-Ein Beitrag zur quantitativen Prognose der Bodenerosion durch Wasser in Mitteleuropa. Bonner Bodenkundliche Abhandlungen, 13.

    Google Scholar 

  • Schwertmann, U. (1986): Soil erosion: Extent, prediction and protection in Bavaria. In: Chisci, G. and Morgan, R.P.C. (eds): Soil erosion in the European community: Impact of changing agriculture. Rotterdam, Balkema, pp. 185–200.

    Google Scholar 

  • Schwertmann, U., Vogl, W., and Kainz, M. (1987): Bodenerosion durch Wasser. Vorhersage des Abtrags und Bewertung von Gegenmanahmen. Stuttgart, Ulmer.

    Google Scholar 

  • Spott, D., and Guhr, H. (1994): The dynamics of suspended solids in the tidally unaffected River Elbe as a function of flow and shipping. Preprints of the International Symposium on particulate matter in rivers and estuaries, Reinbek, March 1994, pp. 267–273.

    Google Scholar 

  • Stouthamer, E., and Berendsen, H.J.A. (2000): Factors controlling the Holocene avulsion history of the Rhine-Meuse delta (The Netherlands). Journal of Sedimentary Research, 70(5): 1051–1064.

    Article  Google Scholar 

  • Stouthamer, E. (2001): Holocene avulsions in the Rhine-Meuse delta, The Netherlands. PhD. Thesis, Utrecht University. Netherlands Geographical Studies.

    Google Scholar 

  • Trimble, S.W. (1983): A sediment budget for Coon Creek basin in the driftless area, Wisconsin, 1853-1977. American Journal of Science, 283: 454–474.

    Article  Google Scholar 

  • Van Dijk, P.M., and Kwaad, F.J.P.M. (1996): Runoff generation and soil erosion in small agricultural catchments with loess-derived soils. Hydrological Processes, 10: 1049–1059.

    Article  Google Scholar 

  • Van Dijk, P.M., and Kwaad, F.J.P.M. (1999): The supply of sediment tot the river Rhine drainage network. The impact of climate change and land use change on soil erosion and sediment transport to stream channels. Report of the NRP project 952210. Lelystad, Rijkswaterstaat-RIZA.

    Google Scholar 

  • Van Dijk, P.M. (2001): Soil erosion and associated sediment supply to rivers. Seasonal dynamics, soil conservation measures and impacts of climate change. PhD Thesis, University of Amsterdam.

    Google Scholar 

  • Veeneklaas, F.R., van den Berg, L.M., Slothouwer, D. and IJkelenstam, G.F.P. (1994): Land use: past present and future. Volume 4 of land use projections for the Rhine basin on biophysical and socio-economic analysis. Report 85.4. Wageningen: Winand Staring Centre.

    Google Scholar 

  • Walling, D.E. (1990): Linking the field to the river: sediment delivery from agricultural land. In: Boardman, J., Foster, I.D.L., and Dearing, J.A. (eds): Soil erosion on agricultural land. Wiley, New York, pp. 129–152.

    Google Scholar 

  • Walling, D.E., and Webb, B.W. (1981): The reliability of suspended sediment load data. In: Walling, D.E. (ed): Erosion and sediment transport measurements (Proceedings of the Florence Symposium, June 1981). IAHS Publication No. 133: 177–194.

    Google Scholar 

  • Walling, D.E., and Webb, B.W. (1982): Sediment availability and the prediction of storm-period sediment yields. In: Walling, D.E. (ed): Recent developments in the explanation and prediction of erosion and sediment yield (Proceedings of the Exeter Symposium, July 1982). IAHS Publication No. 137: 327–337.

    Google Scholar 

  • Walling, D.E., and Webb, B.W. (1996): Erosion and sediment yield: a global overview. In: Walling, D.E., and Webb, B.W. (eds): Erosion and sediment yield: Global and regional perspectives. IAHS Publication No. 236: 3–20.

    Google Scholar 

  • Walling, D.E., Peart, M.R., Oldfield, F., and Thompson, R. (1979): Suspended sediment sources identified by magnetic measurements. Nature, 281: 110–113.

    Article  Google Scholar 

  • Wesseling, C.G., Karssenberg, D., Burrough, P.A., and Van Deursen, W.P.A. (1996): Integrating dynamic environmental models in GIS: The development of a dynamic modelling language. Transactions in GIS, 1: 40–48.

    Article  Google Scholar 

  • Wischmeier, W.H., and Smith, D.D. (1978): Predicting rainfall erosion losses-a guide to conservation planning. Agricultural Handbook no. 537, Science and education Administration USDA, Washington D.C., 58 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Middelkoop, H., Asselman, N.E.M. (2003). Impact of Climate and Land Use Change on River Discharge and the Production, Transport and Deposition of Fine Sediment in the Rhine basin - a summary of recent results. In: Lang, A., Dikau, R., Hennrich, K. (eds) Long Term Hillslope and Fluvial System Modelling. Lecture Notes in Earth Sciences, vol 101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36606-7_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-36606-7_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00982-5

  • Online ISBN: 978-3-540-36606-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics