Skip to main content

Multigrid Convergence and Surface Area Estimation

  • Conference paper
  • First Online:
Geometry, Morphology, and Computational Imaging

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2616))

Abstract

Surface area of discrete objects is an important feature for model-based image analysis. In this article, we present a theoretical framework in order to prove multigrid convergence of surface area estimators based on discrete normal vector field integration. The paper details an algorithm which is optimal in time and multigrid convergent to estimate the surface area and a very efficient algorithm based on a local but adaptive computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Borgefors. Distance transformations in digital images. Comput. Vision Graphics Image Process., 34(3):344–371, Jun. 1986.

    Article  Google Scholar 

  2. J.-B. Brzoska, C. Coléou, B. Lesaffre, S. Borel, O. Brissaud, W. Ludwig, E. Boller, and J. Baruchel. 3D visualization of snow samples by microtomography at low temperature. ESRF Newsletter, 32:22–23, Apr. 1999.

    Google Scholar 

  3. L. Chen, G. T. Herman, R. A. Reynolds, and J. K. Udupa. Surface shading in the Cuberille environment. IEEE Comput. Graph. Appl., 5(12):33–43, Dec. 1985.

    Article  MATH  Google Scholar 

  4. D. Coeurjolly, I. Debled-Rennesson, and O. Teytaud. Segmentation and length estimation of 3d discrete curves. In Digital and Image Geometry, pages 295–313. Springer Lecture Notes in Computer Science, 2243, 2001.

    Chapter  Google Scholar 

  5. C. Coléou, B. Lesaffre, J.-B. Brzoska, W. Ludwig, and E. Boller. Three-dimensional snow images by X-ray microtomography. Ann. Glaciol., 32:75–81, 2001.

    Article  Google Scholar 

  6. I. Debled-Rennesson and J. P. Reveillès. A linear algorithm for segmentation of digital curves. In International Journal of Pattern Recognition and Artificial Intelligence, volume 9, pages 635–662, 1995.

    Article  Google Scholar 

  7. T. J. Ellis, D. Proffitt, D. Rosen, and W. Rutkowski. Measurement of the lengths of digitized curved lines. Computer Graphics and Image Processing, 10:333–347, 1979.

    Article  Google Scholar 

  8. F. Feschet and L. Tougne. Optimal time computation of the tangent of a discrete curve: Application to the curvature. In 8th International Workshop in Discrete Geometry for Computer Imagery, pages 31–40. Springer-Verlag, LNCS, 1568, 1999.

    Google Scholar 

  9. F. Flin, J.-B. Brzoska, B. Lesaffre, C. Coléou, and P. Lamboley. Computation of normal vectors of discrete 3D objects: application to natural snow images from X-ray tomography. Image Anal. Stereol., 20:187–191, Nov. 2001.

    Google Scholar 

  10. F. Flin, J.-B. Brzoska, B. Lesaffre, C. Coléou, P. Lamboley, D. Coeurjolly, O. Teytaud, G. Vignoles, and J.-F. Delesse. An adaptive filtering method to evaluate normal vectors and surface areas of 3D objects. Application to snow images from X-ray tomography. submitted to IEEE Trans. Image Processing.

    Google Scholar 

  11. P.-L. George and H. Borouchaki. Delaunay triangulation and meshing-Application to finite elements. Hermes, Paris, 1998. in French.

    Google Scholar 

  12. H. Gouraud. Continuous shading of surfaces. IEEE Trans. Comput., C-20(6):223–228, Jun. 1971.

    Article  Google Scholar 

  13. T. Hirata. A unified linear-time algorithm for computing distance maps. Information Processing Letters, 58(3):129–133, May 1996.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Jonas and N. Kiryati. Digital representation schemes for 3D curves. Pattern Recognit., 30(11):1803–1816, 1997.

    Article  Google Scholar 

  15. Y. Kenmochi and R. Klette. Surface area estimation for digitized regular solids. In L. J. Latecki, D. M. Mount, and A. Y. Wu, editors, Proc. Vision Geometry IX, volume 4117, pages 100–111. SPIE, Oct. 2000.

    Google Scholar 

  16. R. Klette and H. J. Sun. Digital planar segment based polyhedrization for surface area estimation. In C. Arcelli, L. P. Cordella, and G. Sanniti di Baja, editors, International Workshop on Visual Form 4, volume 2059 of Lect. Notes Comput. Sci., pages 356–366. Springer-Verlag, 2001.

    Google Scholar 

  17. R. Klette and J. Zunic. Multigrid convergence of calculated features in image analysis. Journal of Mathematical Imaging and Vision, 13:173–191, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  18. V. A. Kovalevsky. Finite topology as applied to image analysis. Comput. Vision Graphics Image Process., 46(2):141–161, May 1989.

    Article  Google Scholar 

  19. A. Lenoir. Des outils pour les surfaces discrètes. PhD thesis, Université de Caen, 1999. in French.

    Google Scholar 

  20. A. Lenoir, R. Malgouyres, and M. Revenu. Fast computation of the normal vector field of the surface of a 3-D discrete object. In Discrete Geometry for Computer Imagery: 6th Workshop, volume 1176 of Lect. Notes Comput. Sci., pages 101–112. Springer-Verlag, 1996)

    Google Scholar 

  21. W. E. Lorensen and H. E. Cline. Marching cubes: a high resolution 3D surface construction algorithm. Computer Graphics, 21(4):163–169, 1987. SIGGRAPH’87 Conference Proceedings (Anaheim, California).

    Google Scholar 

  22. A. Meijster, J. B. T. M. Roerdink, and W. H. Hesselink. A general algorithm for computing distance transforms in linear time. In Mathematical Morphology and its Applications to Image and Signal Processing, pages 331–340. Kluwer, 2000.

    Google Scholar 

  23. J. C. Mullikin and P. W. Verbeek. Surface area estimation of digitized planes. Bioimaging, 1:6–16, 1993.

    Article  Google Scholar 

  24. L. Papier and J. Françon. Evaluation de la normale au bord d’un objet discret 3D. Revue de CFAO et d’informatique graphique, 13:205–226, 1998. in French. 106, 113

    Google Scholar 

  25. J. P. Reveillès. Géométrie discrète, calcul en nombres entiers et algorithmique. PhD thesis, Univ. Louis Pasteur, Strasbourg, 1991.

    Google Scholar 

  26. A. Rosenfeld and R. Klette. Digital straightness. In Sébastien Fourey, Gabor T. Herman, and T. Yung Kong, editors, International Workshop on Combinatorial Image Analysis, volume 46 of Electronic Notes in Theoretical Computer Science, Temple University, Philadelphia, Pennsylvania, U.S.A., August 2001. Elsevier Science Publishers.

    Google Scholar 

  27. F. Sloboda and B. Zatko. On approximation of Jordan surfaces in 3D. In G. Bertrand, A. Imiya, and R. Klette, editors, Digital and Image Geometry, volume 2243 of Lect. Notes Comput. Sci., pages 365–388. Springer-Verlag, 2001.

    Google Scholar 

  28. P. Tellier and I. Debled-Renesson. 3D discrete normal vectors. In G. Bertrand, M. Couprie, and L. Perroton, editors, Discrete Geometry for Computer Imagery: 8th Workshop, volume 1568 of Lect. Notes Comput. Sci., pages 447–458. Springer-Verlag, 1999.

    Google Scholar 

  29. G. Thürmer and C. A. Wüthrich. Normal computation for discrete surfaces in 3D space. Computer Graphics Forum, 16(3):15–26, Aug. 1997. Proceedings of Eurographics’97.

    Google Scholar 

  30. B. J. H. Verwer. Local distances for distance transformations in two and three dimensions. Pattern Recognit. Lett., 12:671–682, Nov. 1991.

    Article  Google Scholar 

  31. A. Vialard. Geometrical parameters extraction from discrete paths. Discrete Geometry for Computer Imagery, 1996.

    Google Scholar 

  32. R. Yagel, D. Cohen, and A. Kaufman. Normal estimation in 3D discrete space. The visual computer, 8(5–6):278–291, Jun. 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coeurjolly, D., Flin, F., Teytaud, O., Tougne, L. (2003). Multigrid Convergence and Surface Area Estimation. In: Asano, T., Klette, R., Ronse, C. (eds) Geometry, Morphology, and Computational Imaging. Lecture Notes in Computer Science, vol 2616. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36586-9_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-36586-9_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00916-0

  • Online ISBN: 978-3-540-36586-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics