Skip to main content

Combinatorial and Geometric Problems Related to Digital Halftoning

  • Conference paper
  • First Online:
Geometry, Morphology, and Computational Imaging

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2616))

Abstract

Digital halftoning is a technique to convert a continuoustone image into a binary image consisting of black and white dots. It is an important technique for printing machines and printers to output an image with few intensity levels or colors which looks similar to an input image. The purposes of this paper are to reveal that there are a number of problems related to combinatorial and computational geometry and to present some solutions or clues to those problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Asano: “Digital Halftoning Algorithm Based on Random Space-Filling Curve,” IEICE Trans. on Fundamentals, Vol.E82-A, No.3, pp.553–556, Medgeh 1999.

    Google Scholar 

  2. T. Asano, K. Obokata, N. Katoh, and T. Tokuyama: “Matrix rounding under the L p-discrepancy measure and its application to digital halftoning,” Proc. ACMSIAM Symposium on Discrete Algorithms, pp.896–904, San Francisco, 2002.

    Google Scholar 

  3. T. Asano, T. Matsui, and T. Tokuyama: “Optimal Roundings of Sequences and Matrices,” Nordic Journal of Computing, Vol.7, No.3, pp.241–256, Fall 2000.

    MATH  MathSciNet  Google Scholar 

  4. T. Asano and T. Tokuyama: “How to Color a Checkerboard with a Given Distribution — Matrix Rounding Achieving Low 2 X 2-Discrepancy,” Proc. ISAAC01, pp. 636–648, Christchurch, 2001.

    Google Scholar 

  5. T. Asano, D. Ranjan and T. Roos: “Digital halftoning algorithms based on optimization criteria and their experimental evaluation,” IEICE Trans. Fundamentals, Vol. E79-A, No. 4, pp.524–532, April 1996.

    Google Scholar 

  6. B. E. Bayer: “An optimum method for two-level rendition of continuous-tone pictures,” Conference Record, IEEE International Conference on Communications, 1, pp.(26–11)-(26-15), 1973.

    Google Scholar 

  7. B. Chazelle: “The Discrepancy Method: Randomness and Complexity,” Cambridge University Press, 2000.

    Google Scholar 

  8. R. W. Floyd and L. Steinberg: “An adaptive algorithm for spatial gray scale,” SID 75 Digest, Society for Information Display, pp.36–37, 1975.

    Google Scholar 

  9. D. E. Knuth: “Digital halftones by dot diffusion,” ACM Trans. Graphics, 6–4, pp.245–273, 1987.

    Article  Google Scholar 

  10. D. L. Lau and G. R. Arce: “Modern Digital Halftoning,” Marcel Dekker, Inc., New York, 2001.

    Google Scholar 

  11. J. Matoušek: “Geometric Discrepancy,” Springer, 1991. 62

    Google Scholar 

  12. T. Mitsa and K. J. Parker: “Digital halftoning technique using a blue-noise mask,” J. Opt. Soc. Am., A/Vol.9, No.11, pp.1920–1929, 1992.

    Article  Google Scholar 

  13. R. Morelli: “Pick’s theorem and Todd class of a toric variety,” Adv. Math., 100, pp.183–231, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Motwani and P. Raghavan: “Randomized Algorithms,” Cambridge University Press, 1995.

    Google Scholar 

  15. V. Ostromoukhov, R. D. Hersh, and I. Amidror: “Rotated Dispersed Dither: a New Technique for Digital Halftoning,” Proc. of SIGGRAPH’ 94, pp.123–130, 1994.

    Google Scholar 

  16. P. Raghavan and C. D. Thompson: “Randomized rounding,” Combinatorica, 7, pp.365–374, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. Ulichney: Digital halftoning, MIT Press, 1987.

    Google Scholar 

  18. R. A. Ulichney: “Dithering with blue noise,” Proc. IEEE, 76, 1, pp.56–79, 1988.

    Google Scholar 

  19. R. Ulichney: “The void-and-cluster method for dither array generation,” IS&T/SPIE Symposium on Electronic Imaging Science and Technology, Proceedings of Conf. Human Vision, Visual Processing and Digital Display IV, (Eds. Allebach, John Wiley), SPIE vol.1913, pp.332–343, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Asano, T., Katoh, N., Obokata, K., Tokuyama, T. (2003). Combinatorial and Geometric Problems Related to Digital Halftoning. In: Asano, T., Klette, R., Ronse, C. (eds) Geometry, Morphology, and Computational Imaging. Lecture Notes in Computer Science, vol 2616. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36586-9_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-36586-9_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00916-0

  • Online ISBN: 978-3-540-36586-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics