Skip to main content

Digitisation, Representation, and Formalisation Digital Libraries of Mathematics

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2594))

Abstract

One of the main tasks of the mathematical knowledge management community must surely be to enhance access to mathematics on digital systems. In this paper we present a spectrum of approaches to solving the various problems inherent in this task, arguing that a variety of approaches is both necessary and useful. The main ideas presented are about the differences between digitised mathematics, digitally represented mathematics and formalised mathematics. Each has its part to play in managing mathematical information in a connected world. Digitised material is that which is embodied in a computer file, accessible and displayable locally or globally. Represented material is digital material in which there is some structure (usually syntactic in nature) which maps to the mathematics contained in the digitised information. Formalised material is that in which both the syntax and semantics of the represented material, is automatically accessible. Given the range of mathematical information to which access is desired, and the limited resources available for managing that information, we must ensure that these resources are applied to digitise, form representations of or formalise, existing and new mathematical information in such a way as to extract the most benefit from the least expenditure of resources. We also analyse some of the various social and legal issues which surround the practical tasks.

This work is supported by EU Grant MKMNet IST-2001-37057 and UK EPSRC Grant GR/S10919

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Athale and R. Athale. Exchange of mathematical information on the web: Present and Future. In Buchberger and Caprotti [BC01].

    Google Scholar 

  2. A. Asperti, L. Padovani, C. Sacerdoti Coen, G. Ferruccio,, and I. Schena. Mathematical Knowledge Management in HELM. In Buchberger and Caprotti [BC01].

    Google Scholar 

  3. A. Asperti, L. Padovani, C. Sacerdoti Coen, and I. Schena. HELM and the Semantic Math-Web. Springer-Verlag LNCS 2152, 2001.

    MATH  Google Scholar 

  4. M. Abramowitz and I. A. Stegun. Handbook of mathematical functions with formulas, graphs and mathematical tables. Dover, 1972.

    Google Scholar 

  5. M. Aigner and G. M. Ziegler. Proofs from THE BOOK. Springer, 1999.

    Google Scholar 

  6. C. Babbage. On the Theoretical Principles of the Machinery for Calculating Tables. Edin Phtl Jrl, 8:122–128, 1823.

    Google Scholar 

  7. B. Barras, S. Boutin, et al. The Coq Proof Assistant Reference Manual (Version 6.1). Technical report, INRIA, 1996. Available on-line with Coq distribution from ftp://ftp.inria.fr.

  8. P. Baumgartner and A. Blohm. Automated Deduction Techniques for the Management of Personal Documents (Extended Abstract). In Buchberger and Caprotti [BC01]

    Google Scholar 

  9. B. Buchberger and O. Caprotti, editors. MKM 2001 (First International Workshop on Mathematical Knowledge Management). http://www.risc.uni-linz.ac.at/conferences/MKM2001/Proceedings, 2001.

  10. J. M. Borwein. The International Math Union’s Electronic Initiatives (Extended Abstract). In Buchberger and Caprotti [BC01].

    Google Scholar 

  11. R. L. Constable, S. F. Allen, et al. Implementing Mathematics with the NuPrl Proof Development System. Prentice-Hall, 1986.

    Google Scholar 

  12. J. Davenport. Mathematical Knowledge Representation (Extended Abstract). In Buchberger and Caprotti [BC01].

    Google Scholar 

  13. M. Dewar. OpenMath: An Overview. ACM SIGSAM Bulletin, 34(2):2–5, June 2000.

    Article  Google Scholar 

  14. M. Dewar. Special Issue on OPENMATH. ACM SIGSAM Bulletin, 34(2), June 2000.

    Google Scholar 

  15. M. Froumentin. Mathematics on the Web with MathML. http://www.w3.org/People/maxf/papers/iamc.ps, 2002.

  16. R. Fateman, T. Tokuyasu, B. P. Berman, and N. Mitchell. Optical Character Recognition and Parsing of Typeset Mathematics. Journal of Visual Communication and Image Representation, 7(1):2–15, March 1996.

    Article  Google Scholar 

  17. M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL. CUP, 1993.

    Google Scholar 

  18. M. Hart. Project gutenberg, 1971. http://www.gutenberg.org.

  19. J. Harrison. Formal verification of floating point trigonometric functions. Springer-Verlag LNCS 1954, 2000.

    Google Scholar 

  20. M. Jones and N. Beagrie. Preservation Management of Digital Materials (A Handbook). The British Library, 2001.

    Google Scholar 

  21. T. Kealey. More is less. Nature, 405(279), May 2000.

    Google Scholar 

  22. D. Knuth. TEX and METAFONT: New directions in Typesetting. AMS and Digital Press, 1979.

    Google Scholar 

  23. M. Kohlhase. OMDoc: Towards an Internet Standard for the Administration, Distribution and Teaching of Mathematical Knowledge. In J. A. Campbell and E. Roanes-Lozano, editors, Proceedings of Artificial Intelligence and Symbolic Computation 2000, pages 32–52. Springer LNCS 1930, 2001.

    MATH  Google Scholar 

  24. L. Lamport. LATEX: A Document Preparation System, 2/E. Addison Wesley, second edition, 1994.

    Google Scholar 

  25. D. Lozier. The NIST Digital Library of Mathematical Functions Project. In Buchberger and Caprotti [BC01].

    Google Scholar 

  26. J. et al. McCarthy. LISP 1.5 Programmer’s Manual. MIT Press, 1962.

    Google Scholar 

  27. G. O. Michler. How to Build a Prototype for a Distributed Mathematics Archive Library. In Buchberger and Caprotti [BC01].

    Google Scholar 

  28. P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

    Google Scholar 

  29. P. D. Mosses. CoFI: The Common Framework Initiative for Algebraic Specification and Development. pages 115–137. Springer LNCS 1214, 1997.

    Google Scholar 

  30. B. R. Miller and A. Youssef. Technical Aspects of the Digital Library of Mathematical Functions Dreams and Realities. In Buchberger and Caprotti [BC01].

    Google Scholar 

  31. L. C. Paulson. The Foundation of a Generic Theorem Prover. J. Automated Reasoning, 5:363–396, 1988.

    Article  MathSciNet  Google Scholar 

  32. N. Shankar, S. Owre, and J. M. Rushby. The PVS Proof Checker: A Reference Manual. Computer Science Lab, SRI International.

    Google Scholar 

  33. A. Trybulec. The Mizar Logic Information Language, volume 1 of Studies in Logic, Grammar and Rhetoric. Bialystok, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adams, A.A. (2003). Digitisation, Representation, and Formalisation Digital Libraries of Mathematics. In: Asperti, A., Buchberger, B., Davenport, J.H. (eds) Mathematical Knowledge Management. MKM 2003. Lecture Notes in Computer Science, vol 2594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36469-2_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-36469-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00568-1

  • Online ISBN: 978-3-540-36469-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics