Skip to main content

Neural Mechanisms of Visual Flow Integration and Segregation —Insights from the Pinna-Brelsta. Illusion and Variations of It

  • Conference paper
  • First Online:
Biologically Motivated Computer Vision (BMCV 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2525))

Included in the following conference series:

Abstract

The mechanisms involved in the cortical processing of large- field motion patterns still remain widely unclear. In particular, the integrative action of, e.g., cells and their receptive fields, their specificity, the topographic mapping of activity patterns, and the reciprocal interareal interaction needs to be investigated. We utilize a recently discovered relative motion illusion as a tool to gain insights into the neural mechanisms that underlie the integration and segregation of such motion fields occurring during navigation, steering and fixation control. We present a model of recurrent interaction of areas V1, MT, and MSTd along the dorsal cortical pathway utilizing a space-variant mapping of flow patterns. In accordance with psychophysical findings, our results provide evidence that recurrent gain control mechanisms together with the non-linear warping of the visual representation are essential to group or disambiguate motion responses. This provides further evidence for the importance of feedback interactions between cortical areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Graziano, M.S.A., Andersen, R.A., Snowden, R.J.: Tuning of MST neurons to spiral motions. The Journal of Neuroscience, 14 (1994) 54–67

    Google Scholar 

  2. Duffy, C.J., Wurtz, R.H.: Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. Journal of Neurophysiolgy, 65 (1991) 1329–1345

    Google Scholar 

  3. Grossberg, S., Mingolla, E., Pack, C.: A neural model of motion perception and visual navigation by cortical area MST. Cerebral Cortex, 9 (1999) 878–895

    Article  Google Scholar 

  4. Pinna, B., Brelstaff, G.J.: A new visual illusion of relative motion. Vis. Res., 40 (2000) 2091–2096

    Article  Google Scholar 

  5. Lappe, M.: A model of the combination of optic flow and extraretinal eye movement signals in primate extrastriate visual cortex Neural Networks, 11 (1998) 397–414

    Google Scholar 

  6. Grossberg, S., Mingolla, E., Viswanathan, L.: Neural dynamics of motion integration and segmentation within and across apertures. Vis. Res., 41 (2001) 2521–2553

    Article  Google Scholar 

  7. Sabatini, S.P., Solari, F., Carmeli, R., Cavalleri, P., Bisio, G.: A physicalist approach to first-order analysis of optic flow fields in extrastriate cortical areas. Proc. ICANN (1999) 274–279

    Google Scholar 

  8. Schwartz, E.L.: Computational anatomy and functional architecture of striate cortex: a spatial mapping approach to perceptual coding, Vis. Res., 20 (1980) 645–669

    Article  Google Scholar 

  9. Schwartz, E.L.: Computational studies of the spatial architecture of primate visual cortex. In A. Peters and K. Rocklund, editors, Cerebral Cortex, 10 (1994) 359–411

    Google Scholar 

  10. Albright, T.D., Desimone, R.: Local precision of visutopic organization in the middle temporal area (MT) of the macaque. Experimental Brain Research, 65 (1987) 582–592

    Article  Google Scholar 

  11. Qian, N., Andersen, R.A., Adelson, E.H.: Transparent motion perception as detection of unbalanced motion signals. I. Psychophysics. The Journal of Neuroscience, 14 (1994) 7357–7366

    Google Scholar 

  12. Bayerl, P.A.J., Neumann, H.: Cortical mechanisms of processing visual flow—Insights from the Pinna-Brelstaff illusion. Workshop Dynamic Perception (2002) in print

    Google Scholar 

  13. Grossberg, S.: How Does a Brain Build a Cognitive Code? Psychological Review, 87 (1980) 1–51

    Article  Google Scholar 

  14. Neumann, H., Sepp, W.: Recurrent V1-V2 interaction in early visual boundary processing Biological Cybernetics, 81 (1999) 425–444

    Google Scholar 

  15. Rodman, H.R., Albright, T.D.: Coding of the visual stimulus velocity in area MT of the macaque. Vis. Res., 27 (1987) 2035–2048

    Article  Google Scholar 

  16. Qian, N., Andersen, R.A., Adelson, E.H.: Transparent motion perception as detection of unbalanced motion signals. III. Modeling. The Journal of Neuroscience, 14 (1994) 7381–7392

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bayerl, P., Neumann, H. (2002). Neural Mechanisms of Visual Flow Integration and Segregation —Insights from the Pinna-Brelsta. Illusion and Variations of It. In: Bülthoff, H.H., Wallraven, C., Lee, SW., Poggio, T.A. (eds) Biologically Motivated Computer Vision. BMCV 2002. Lecture Notes in Computer Science, vol 2525. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36181-2_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-36181-2_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00174-4

  • Online ISBN: 978-3-540-36181-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics